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A B S T R A C T  A R T I C L E  H I S T O R Y 

 

The value of the global shear buckling coefficient kg and the formula for the interactive shear buckling stress of corrugated 

steel webs (CSWs) are still the subject of debate. In this study, firstly, the analytical formulas for the global and interactive 

shear buckling stresses of CSWs are deduced by the Galerkin method. Simplified formulas for the global shear buckling 

coefficient kg for a four-edge simple support, for a four-edge fixed support, for two edges constrained by flanges fixed and 

the other two edges simply supported, and an interactive shear buckling coefficient table are given. Secondly, an elastic 

finite element analysis is carried out to verify the analytical formulas and to study the influence of geometric parameters on 

the shear buckling stress of CSWs. Finally, a design formula for the shear strength of CSWs which adopts the formulas for 

the global and interactive shear buckling stresses proposed in this paper is assessed. From a comparison between the shear 

strength calculated by this design formula, calculated by four previous design formulas and measured in a series of published 

test results, it is found that the considered design formula provides good predictions for the shear strength of CSWs and can 

be recommended. 
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1.  Introduction 

 

The steel-concrete composite girder with corrugated steel webs (CSWs) 

(see Fig. 1) is known as a new type of bridge structure to overcome the weight 

problem of common concrete box girders. Compared with concrete webs, 

CSWs have low longitudinal stiffness due to the accordion effect, so CSWs 

mainly carry the shear forces and barely carry axial forces [1]. Because of this 

characteristic, CSWs fail due to shear buckling or yielding [2]. Therefore, the 

shear buckling stability of CSWs is one of the most important considerations in 

the design of this kind of composite girder bridges. 
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Fig. 1 Composite girder with CSWs 

 

It is widely accepted that local buckling is the primary failure mode in 

coarse corrugations, whereas global buckling becomes the primary failure mode 

in dense corrugations and interactive shear buckling mode becomes primary 

when the density is in between of the two above scenarios [3].  

The local shear buckling of CSWs is solved by analyzing a single flat panel 

constrained by adjacent panels and girder flanges. For this, the shear buckling 

stress formula of isotropic rectangular plates [4] can be applied. Aggarwal et al. 

[5] numerically investigated the local shear buckling of CSWs and found that 

the edge conditions between the CSWs and the girder flanges were close to fixed, 

while those between the flat and inclined panels lied between simply supported 

and fixed. 

The global shear buckling of CSWs for straight girder bridges is analyzed 

by treating the whole corrugated steel web (CSW) as an orthotropic rectangular 

plate constrained by concrete flanges and diaphragms, and has been studied by 

various researchers. Easley and McFarland [6] investigated the global shear 

buckling behavior of corrugated metal diaphragms by assuming them as 

orthotropic plates and developed the formula for the shear buckling load by the 

Ritz and the Energy method. Then, Easley [7] made a comparative analysis of 

the Bergmann-Reissner formula [8], the Hlavacek formula [9] and the Easley-

McFarland formula [6], and proposed a more comprehensive and applicable 

global shear buckling formula of corrugated plates. As application of corrugated 

plates, initially used for aircrafts, was gradually extended to civil engineering, 

the formula 
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buckling stress of CSWs, where kg is the global shear buckling coefficient 

depending on the edge conditions. For a four-edge simple support, Easley [7] 

suggested kg=36, Peterson [10] and Bergfelt et al. [11] suggested kg=32.4, while 

the Guide to Stability Design Criteria for Metal Structures [12] adopts kg=31.6. 

For a four-edge fixed support, Easley [7] suggested kg=68.4, Peterson [10] and 

Bergfelt, et al. [11] suggested kg=60.4, while the Guide to Stability Design 

Criteria for Metal Structures [12] adopts kg=59.2. El Metwally and Loov [13] 

suggested kg=50 for composite girders with CSWs. From the studies mentioned 

above, it is clear that although a global shear buckling formula of CSWs has 

been proposed, researchers hold different views on the value of the global shear 

buckling coefficient kg. Many adjustments of the coefficient kg are based on FEA 

only, and lack theoretical support. Machimdamrong et al. [14] presented the 

transition curves of the elastic global shear buckling capacity with the boundary 

conditions from a four-edge simple support to a four-edge fixed support using 

the Rayleigh-Ritz method, but only the curves for the plate dimensions (l×h) of 

1m×1m and 2m×1m were provided. Therefore, it is necessary to investigate the 

global shear buckling of CSWs with different boundary conditions theoretically. 

Finally, the formula for the interactive shear buckling is determined by the 

local and global shear buckling stresses, and the yield stress of the plate material 

[15], but the way these parameters are to be combined is still the subject of 

debate. Important work has been done by Bergfelt and Leiva-Aravena [16], El 

Metwally [17], Abbas et al. [18], Shiratani et al. [19], Sayed-Ahmed [20] and 

Yi et al. [15], etc., and various interactive shear buckling formulas of CSWs 

were proposed. All the formulas might be not accurate enough since their forms 

were too simple [21], and are based on the relationship between the local and 

global shear buckling stresses, and the yield stress only. All the elastic 

interactive formulas show that the interactive shear buckling stress is the 

minimum value of the three shear buckling modes, which is not reasonable and 

lacks theoretical support. Therefore, it is necessary to investigate the interactive 

shear buckling of CSWs from a theoretical point of view. 

For practical applications, Elgaaly et al. [22] recommended that the 



Su-mei Liu et al. 350 

 

capacity of CSWs was controlled by the minimum value of local and global 

buckling stresses, and a semiempirical formula for the inelastic buckling stress 

was proposed. Driver et al. [23] suggested a lower bound formula by combining 

local and global shear buckling formulas. Moon et al. [24] proposed a shear 

buckling parameter formula for trapezoidal CSWs based on the relationship 

between local, global and interactive shear buckling stresses. Eldib [3] proposed 

a shear buckling parameter formula for curved CSWs. Nie et al. [21] carried out 

eight H-shape steel girders with CSWs and suggested a formula for the shear 

strength prediction of trapezoidal CSWs. Hassanein et al. studied the shear 

behavior of linearly tapered girder bridges with CSWs [25], and girders with 

high-strength CSWs [26]. Leblouba and Barakat [2] experimentally and 

numerically investigated the shear stress distribution in trapezoidal CSWs.  

In this study, the whole CSW is treated as an orthotropic plate constrained 

by flanges and diaphragms for the global shear buckling analysis, and the folded 

plate composed of two adjacent panels is treated as an isotropic shallow shell 

for the interactive shear buckling analysis. Firstly, the analytical formulas for 

the global and interactive shear buckling stresses are derived by the Galerkin 

method. Then, an elastic finite element analysis (FEA) is carried out to verify 

the analytical formulas and to study the influence of geometric parameters on 

the shear buckling stress of CSWs. Finally, a design formula for the shear 

strength of CSWs which adopts the formulas for the global and interactive shear 

buckling stresses proposed in this paper is assessed. 

 

2.  Elastic shear buckling stress of CSWs 

 

2.1. Physical equivalent parameters of CSWs 

 

For trapezoidal CSWs that are commonly used in actual girder bridges, 

when treated as an orthotropic plate, the equivalent flexural stiffnesses Dx, Dy 

and the torsional stiffness Dxy per unit length of a CSW can be expressed as Eqs.  

(1)-(3) [6]. 
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where E is the elastic modulus of the original steel plate; μ is the Poisson's ratio; 

t is the web thickness. As shown in Fig. 1, a is the flat panel width; c is the 

inclined panel width; d is the corrugation depth; θ is the corrugation angle; q is 

the horizontal projection length of one periodic corrugation; s is the total folded 

panel length of one periodic corrugation.  

 

2.2. Elastic local shear buckling 

 

The shear buckling stress formula of isotropic rectangular plates Eq. (4) [4] 

can be applied to calculate the elastic local shear buckling stress of CSWs. 
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where kl is the elastic local shear buckling coefficient of CSWs; p is the 

maximum value of the flat panel width a and the inclined panel width c. 

The elastic local shear buckling coefficient kl can be expressed as Eqs. (5)-

(7). 

For a four-edge simple support: 
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For a four-edge fixed support: 
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For the two edges constrained by flanges fixed and the other two edges 

simply supported: 
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2.3. Elastic global shear buckling 

 

2.3.1. Critical buckling stress under pure shear 

A CSW with dense corrugations can be treated as an orthotropic plate (Fig. 

2) for the global shear buckling analysis. 
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Fig. 2 CSW and its equivalent orthotropic plate 

 

According to the stability theory of plates, the equilibrium equation of an 

orthotropic plate subjected to a shear force can be expressed as Eq. (8) [27]. 
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where w is the out of plane deflection of the plate, τ is the shear stress.  

It can be assumed that the boundary conditions of CSWs satisfy a four-

edge simple support, a four-edge fixed support, or two edges constrained by 

flanges fixed and the other two edges simply supported (the edges x=0 and x=l 

are simply supported, the edges y=0 and y=h are fixed supported). The functions 

of deflection can be expressed respectively as Eqs. (9)-(11). 

For a four-edge simple support [4]: 
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For a four-edge fixed support [28]: 
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For the edges x=0 and x=l simply supported, and the edges y=0 and y=h 

fixed: 
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where h is the web height equal to the clear distance between the top and bottom 

concrete flanges, l is the web length equal to the distance between the two 

adjacent diaphragm plates.  

Given λ=l/h, α=Dx/Dy and β=Dxy/Dy, Eq. (8) can be simplified as Eqs. (12)-

(14) according to the Galerkin method. 

For the four-edge simple support: 
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For the four-edge fixed support: 
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For the edges x=0 and x=l simply supported, and the edges y=0 and y=h 

fixed: 
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By assigning values to m and n in Eqs. (12)-(14), a series of linear algebraic 

equations with Cij as unknowns can be obtained. Then the critical shear buckling 

stress can be derived by assuming the coefficient determinant of the linear 

algebraic equations equals zero. (i. e. a linear bifurcation analysis). 

According to Eqs. (12)-(14), the elastic global shear buckling stress of 

CSWs can be expressed as Eq. (15). 
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where kg is the elastic global shear buckling coefficient of CSWs. The detailed 

solution process of the coefficient kg,s for a four-edge simple support, kg,f for a 

four-edge fixed support, kg,fs for the edges x=0 and x=l simply supported, and 

the edges y=0 and y=h fixed is given below. 

 

2.3.2. Calculation of the global shear buckling coefficient kg 

(1) Comparison with isotropic plate 

Based on “Theory of elastic stability” [4], the elastic shear buckling stress 

of isotropic rectangular plates can be expressed as Eq. (16). 
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where D is the flexural stiffness, and k is the elastic shear buckling coefficient 

of isotropic rectangular plates. The coefficients ks for the four-edge simple 

support, kf for the four-edge fixed support, kfs for the edges x=0 and x=l simply 

supported, and the edges y=0 and y=h fixed are given in Timoshenko [4]. 

    When Dx/Dy=1 and Dxy/Dy=2, The Eq. (15) for the elastic global shear 

buckling stress of CSWs derived in this paper can be also applied to calculate 

isotropic plates. The global shear buckling coefficient kg in Eq. (15) should be 

divided by π2 to meet the needs of comparison with Timoshenko [4]. The shear 

buckling coefficient k from Timoshenko [4] and kg/π
2 derived in this paper are 

given in Table 1. 

    As can be seen from Table 1, the average difference between kg/π
2 derived 

in this paper, which takes 900 trigonometric series (m=30, n=30), and k from 

Timoshenko [4] is 1.2% (the maximum being 4.4%) showing the accuracy of 

the solution method proposed in this paper. 

Table 1 

Elastic shear buckling coefficient of isotropic rectangular plates 

Coefficient Boundaries 
l/h 

1 1.2 1.4 1.5 1.6 1.8 2 2.5 3 4 

kg,s/π2 
Four-edge simply 

9.32 7.98 7.29 7.07 6.91 6.69 6.55 6.08 5.84 5.62 

ks 9.34 8 7.3 7.1 7 6.8 6.6 6.1 5.9 5.7 

kg,f/π2 
Four-edge fixed 

15.04 — — 11.77 — — 10.52 — — — 

kf 14.71 — — 11.5 — — 10.34 — — — 

kg,fs/π2 x=0, x=l simply, 12.82 — — 11.01 — — 10.26 9.88 9.73 — 

kfs y=0, y=h fixed 12.28 — — 11.12 — — 10.21 9.81 9.61 — 

Note: “—” expresses the value of k is not given in Timoshenko [4]. 
 

Table 2 

Geometry of CSWs in actual bridges [3, 15, 24, 26, 29]  

Bridges a b c d h tmin tmax 
 

min

a

t
  

a

tmax

 
3a c

q

+
 

Based on tmin Based on tmax 

 mm mm mm mm mm mm mm α β α β 

Cognac 353 319 353 150 1771 8 8 44.1 44.1 1.05 0.0013 0.0022 0.0013 0.0022 

Maupre 284 241 284 150 2650 8 8 35.5 35.5 1.08 0.0012 0.0022 0.0012 0.0022 

Dole 430 370 430 220 1800~4010 8 12 53.8 35.8 1.08 0.0006 0.0010 0.0013 0.0023 

Shinkai 250 200 250 150 1183 9 9 27.8 27.8 1.11 0.0015 0.0028 0.0015 0.0028 

Miyukibashi 300 260 300 150 2210 8 12 37.5 25.0 1.07 0.0012 0.0022 0.0028 0.0049 

Katsutegawa 430 370 430 220 2080~5300 9 12 47.8 35.8 1.08 0.0007 0.0013 0.0013 0.0023 

Hondani 330 270 336 200 1025~5095 9 14 36.7 23.6 1.11 0.0008 0.0016 0.0020 0.0038 

Koinumarukawa 430 370 430 220 1580~3600 9 16 47.8 26.9 1.08 0.0007 0.0013 0.0023 0.0041 

Shimoda 430 370 430 220 1140~5360 12 16 35.8 26.9 1.08 0.0013 0.0023 0.0023 0.0041 

Nakano Viaduct 330 270 336 200 1010~3100 9 19 36.7 17.4 1.11 0.0008 0.0016 0.0037 0.0070 

Kurobekawa Railway 400 350 400 200 2500~3400 12 25 33.3 16.0 1.07 0.0016 0.0028 0.0069 0.0120 

Altwipfergrund 360 288 360 220 1633~2674 10 22 36.0 16.4 1.11 0.0008 0.0016 0.0041 0.0077 

Juancheng-Huanghe 430 370 430 220 1729~4253 10 18 43.0 23.9 1.08 0.0009 0.0016 0.0029 0.0051 

Henan-Pohe 250 200 250 150 1305 8 8 31.3 31.3 1.11 0.0012 0.0022 0.0012 0.0022 

Wei River 330 270 336 200 1000~1350 8 12 41.3 27.5 1.11 0.0007 0.0012 0.0015 0.0028 

Nanjing-Chuhe 430 370 430 220 2420~4900 10 18 43.0 23.9 1.08 0.0009 0.0016 0.0029 0.0051 

Note: tmax and tmin are the maximum and minimum thicknesses of CSWs respectively when an actual bridge has more than one thickness value. 

http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.5.0.4311&q=%E5%BC%B9%E6%80%A7%E7%9A%84
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(2) Calculation of kg 

According to Eqs. (12)-(15), the global shear buckling coefficient kg is 

associated with the length to height ratio λ (l/h), and the rigidity ratios α (Dx/Dy ) 

and β (Dxy/Dy ). A statistical analysis of available bridges with CSWs (as shown 

in Table 2) shows that the rigidity ratio α varies from 0.0006 to 0.0069, whereas 

β is about (1.67~2.0)α. The following parametric study considers α ranging from 

0.0005 to 0.0070, and β equal to 1.6α, 1.8α, 2.0α respectively. 

Theoretically, the more numbers used in the trigonometric series (as shown 

in Eqs. (9)-(11)), the more precise the solution is. If m and n increase toward 

infinity, exact results of shear buckling stress can be obtained. However, the 

calculation effort increases with the increasing numbers m and n in the 

trigonometric series. In the case of the CSW with a length to height ratio l/h less 

than 5, the deviation between the results with m=30, n=30 and the results with 

m=25, n=25 is less than 1%. So, adopting m=30 and n=30 for further calculation 

will not only ensure the accuracy of the calculation but also reduce the 

calculation effort. 

Table 3 shows the values of kg,s calculated for various values of Dx/Dy and 

l/h, and for β=1.6α, β=1.8α and β=2.0α respectively for a four-edge simple 

support. The results for β=1.6α and β=2.0α, compared to for β=1.8α, deviate 

less than 0.6%. The results show that the parameter β/α has little effect on the 

coefficient kg for common bridges with CSWs. From an engineering application 

point of view, the deviations can be ignored. In addition, the conclusion remains 

unchanged for a four-edge fixed support, and for two edges constrained by 

flanges fixed and the other two edges simply supported. As a result, β=1.8α is 

used further in this paper.  

Tables 4-6 list the values of the global shear buckling coefficient kg for 

length to height ratios l/h varying from 1 to 5, a rigidity ratio Dx/Dy varying from 

0.0005 to 0.0070, and a fixed value of β=1.8α. As shown in Tables 4 to 6, global 

shear buckling coefficients kg,s, kg,f, and kg,fs for an equal web length to height 

ratio l/h and rigidity ratio Dx/Dy exhibit relationships: kg,f/kg,s=1.84~1.90, 

kg,fs/kg,s=1.83~1.89, kg,f/kg,fs=1~1.013. This shows that the global shear buckling 

stress for the four-edge fixed support is only slightly higher than for two edges 

constrained by flanges fixed and the other two edges simply supported, the 

difference is less than 1.5%. 

 

Table 3 

The effect of β/α on the global shear buckling coefficient kg,s for the four-edge simple support 

Dx/Dy  

 

  l/h   

1 2 3 4 5 

 β=1.6α 5.016 4.947 4.933 4.929 4.927 

0.0005 β=1.8α 5.024 4.954 4.940 4.936 4.934 

 β=2.0α 5.031 4.962 4.948 4.944 4.942 

 β=1.6α 6.729 6.593 6.562 6.550 6.545 

0.0015 β=1.8α 6.747 6.610 6.579 6.567 6.562 

 β=2.0α 6.765 6.627 6.597 6.585 6.579 

 β=1.6α 7.741 7.561 7.509 7.492 7.485 

0.0025 β=1.8α 7.767 7.586 7.534 7.517 7.510 

 β=2.0α 7.793 7.611 7.559 7.542 7.535 

 β=1.6α 8.508 8.269 8.215 8.195 8.185 

0.0035 β=1.8α 8.543 8.302 8.248 8.227 8.217 

 β=2.0α 8.577 8.335 8.280 8.259 8.249 

 β=1.6α 9.526 9.113 9.047 9.020 9.006 

0.0050 β=1.8α 9.568 9.155 9.090 9.062 9.048 

 β=2.0α 9.610 9.198 9.132 9.104 9.090 

 β=1.6α 10.392 10.031 9.919 9.885 9.870 

0.0070 β=1.8α 10.449 10.085 9.973 9.939 9.924 

 β=2.0α 10.507 10.139 10.028 9.993 9.977 

 

Table 4 

Global shear buckling coefficient kg,s for a four-edge simple support 

 

l/h 
      Dx/Dy      

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005 0.006 0.007 

1 5.024 6.047 6.747 7.335 7.767 8.165 8.543 8.903 9.249 9.568 10.025 10.449 

1.5 4.975 5.964 6.647 7.186 7.639 8.017 8.371 8.705 9.002 9.255 9.728 10.172 

2 4.954 5.937 6.610 7.134 7.586 7.958 8.302 8.624 8.899 9.155 9.638 10.085 

2.5 4.945 5.924 6.589 7.113 7.552 7.929 8.268 8.579 8.853 9.112 9.596 10.005 

3 4.940 5.914 6.579 7.100 7.534 7.911 8.248 8.553 8.829 9.090 9.556 9.973 

4 4.936 5.906 6.567 7.085 7.517 7.893 8.227 8.528 8.806 9.062 9.527 9.939 

5 4.932 5.903 6.562 7.079 7.510 7.884 8.217 8.517 8.794 9.048 9.510 9.924 

 

Table 5 

Global shear buckling coefficient kg,f for a four-edge fixed support 

l/h 
      Dx/Dy      

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005 0.006 0.007 

1 9.454 11.352 12.654 13.666 14.533 15.297 15.946 16.546 17.109 17.642 18.616 19.428 

1.5 9.392 11.242 12.502 13.494 14.314 15.039 15.669 16.247 16.785 17.273 18.153 18.954 

2 9.370 11.204 12.451 13.427 14.240 14.950 15.573 16.143 16.662 17.140 18.016 18.784 

2.5 9.360 11.187 12.428 13.397 14.207 14.909 15.529 16.093 16.606 17.083 17.942 18.712 

3 9.357 11.178 12.415 13.382 14.188 14.887 15.505 16.065 16.577 17.051 17.908 18.668 

4 9.354 11.170 12.409 13.368 14.171 14.865 15.482 16.039 16.548 17.020 17.871 18.628 

5 9.352 11.165 12.402 13.359 14.163 14.856 15.473 16.029 16.538 17.007 17.856 18.610 
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Table 6 

Global shear buckling coefficient kg,fs for two edges constrained by flanges fixed and the other two edges simply supported  

l/h 
      Dx/Dy      

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005 0.006 0.007 

1 9.442 11.308 12.590 13.614 14.447 15.170 15.841 16.469 16.989 17.470 18.371 19.214 

1.5 9.386 11.227 12.483 13.464 14.296 14.996 15.636 16.212 16.725 17.210 18.113 18.878 

2 9.366 11.198 12.445 13.419 14.229 14.930 15.558 16.121 16.636 17.121 17.979 18.753 

2.5 9.359 11.183 12.423 13.391 14.199 14.898 15.521 16.080 16.595 17.070 17.928 18.691 

3 9.356 11.176 12.413 13.378 14.183 14.881 15.500 16.057 16.571 17.041 17.897 18.658 

4 9.353 11.168 12.408 13.368 14.170 14.863 15.479 16.036 16.545 17.016 17.866 18.623 

5 9.351 11.164 12.401 13.358 14.162 14.855 15.472 16.028 16.537 17.006 17.854 18.607 
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（a）Four-edge simply support                   (b) Four-edge fixed support   (c) Two edges constrained by flanges fixed and the other two edges simply supported 

Fig. 3 The effect of the rigidity ratio Dx/Dy on the global shear buckling coefficient kg 
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（a）Four-edge simply support                   (b) Four-edge fixed support   (c) Two edges constrained by flanges fixed and the other two edges simply supported 

Fig. 4 The effect of the length to height ratio l/h on the global shear buckling coefficient kg 

 

Table 7 

Values of the global shear buckling coefficient kg for l/h=5 

kg 
      Dx/Dy        

0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005 0.0055 0.006 0.0065 0.007 

kg,s 4.932 5.903 6.562 7.079 7.510 7.884 8.217 8.517 8.794 9.048 9.288 9.510 9.722 9.924 

kg,f 9.352 11.165 12.402 13.359 14.163 14.856 15.473 16.029 16.538 17.007 17.444 17.856 18.242 18.610 

kg,fs 9.351 11.164 12.401 13.358 14.162 14.855 15.472 16.028 16.537 17.006 17.443 17.854 18.240 18.607 

 

 

(3) The effect of the rigidity ratio Dx/Dy and the length to height ratio l/h on the 

global shear buckling coefficient kg 

    According to the values of kg given in Tables 4 to 6, for common bridges 

with CSWs, Figs. 3-4 show the effect of the web rigidity ratio Dx/Dy and the 

length to height ratio l/h on the global shear buckling coefficient kg. As we can 

see from Figs. 3-4, the global shear buckling coefficient kg increases with the 

increase of the rigidity ratio Dx /Dy, and decreases with the increase of the length 

to height ratio l/h but only very little. When l/h is larger than 2, which is common 

for CSW bridges, the change of kg is minimal and the values of kg show a 

converging trend. 

 

 

2.3.3. Elastic global shear buckling stress of CSWs 

    Substituting Eq. (2) into Eq. (15), the elastic global shear buckling stress 

of CSWs can be expressed as Eq. (17). 

 

( ) ( )

( )

2 2

2 2

3 3 .csc

6 6 2 2 cot
   

.g

e

g g

E a c d Ed a d
k k

qh h a d






+ +
=

+
=  (17) 

 

Because the values of kg show a converging trend when l/h is larger than 2, 

we assume l/h=5 for further calculation. This will not only ensure the accuracy 

of the calculation but also meet the engineering requirements of design 

simplicity. Table 7 lists the values of kg for l/h=5.  
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    Through fitting of the data in Table 7, for CSWs with 0.0005≤α≤0.0070, 

the global shear buckling coefficients kg,s, kg,f, and kg,fs can be estimated 

respectively as Eqs. (18) and (19).  

For a four-edge simple support: 

 
0.2648

, 36.8g sk =  (18) 

 

For a four-edge fixed support, or for two edges constrained by flanges 

fixed and the other two edges simply supported: 

 
0.2608

, , 67.7g f g fsk k = =  (19) 

 

For trapezoidal CSWs that are commonly used in actual bridges, the 

rigidity ratio α can be expressed as Eq. (20). 

 

( )

( )( )

222 2

2

2 2 .cot

2 (3 ) 2 2 2 .csc 3 .csc

x

y

a dD q t t

D s a c d d a d a d




 

+ 
= = =  

+ + + 
 (20) 

 

2.4. Elastic interactive shear buckling 

 

2.4.1. Critical buckling stress under pure shear 

 

For the interactive shear buckling analysis, folded plate theory is used. A 

folded plate structure is a spatial thin wall system with several long and thin 

plates intersecting. Since interactive shear buckling represents the buckling of a 

few panels, several panels of CSWs can be treated as a folded plate. For 

simplicity, the folded plate composed of two adjacent panels shown in Fig. 5 is 

studied here. According to the theory of thin plates and shells, if l3/l* ≤ 0.2, the 

folded plate can be analyzed as a shallow shell. CSWs general meet this 

condition.  
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Fig. 5 Shear transfer of interactive shear buckling 

 

In the coordinate system as shown in Fig. 5, the equation for the surface of 

the shell can be expressed as Eq. (21). 

 

( ) ( ) ( )3 3
1 1 2 1

1 2

1
l l

z x u x l l l x u x l
l l

= − − + + − −        (21) 

where ( )1u x l−  is the step function and can be expressed as 

1

1

1

0
( )

1

x l
u x l

x l


− = 


. 

    The equilibrium equation and the deformation compatibility equation of a 

shallow shell under pure shear force can be expressed respectively as Eqs. (22) 

and (23) [30]. 

 

2 2 2 2
4

2 2
2 2x xy y

D f
f k k k
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where f is the out of plane deflection of the shell, Φ is the stress function, 

2

2x

z
k

x


= −


, 

2

2y

z
k

y


= −


, 

2

xy

z
k

x y


= −

 
. 

It can be conservatively assumed that the boundary conditions of CSWs 

for the interactive shear buckling analysis satisfy four-edge simple support. The 

deflection function and stress function can be expressed respectively as Eqs. (24) 

and (25). 

 

1 1 *
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According to the Galerkin method and give 
*h l = , Eqs. (24) and (25) 

can be simplified as Eqs. (26) and (27) respectively. 
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Make 
1 *
l l = ， then 

1 *l l= ， ( )2 *1l l= − ， 2 2 2 2

3 *l c l= − . By 

substituting Eq. (27) to Eq. (26), Eq. (26) can be simplified as Eq. (28). 
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Table 2 shows that the flat panel width a is almost equal to the inclined 

panel width c for actual bridges with CSWs. Sayed-Ahmed [20] also proposed 

a=c. When a=c, then 
1 2 *0.5l l l= = , ( )3 sin 2l a = . Eq. (28) can be 

simplified as Eq. (29). 
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By assigning values to i and j in Eq. (28) or (29), a series of linear algebraic 

equations with Amn as unknowns can be obtained. Then the critical shear 

buckling stress can be derived by assuming the coefficient determinant of the 

linear algebraic equations equals zero. (i. e. a linear bifurcation analysis). 

According to Eq. (28), the elastic interactive shear buckling stress of CSWs 

can be expressed as Eq. (30). 
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D
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For CSWs with a=c, Eq. (30) can be expressed as Eq. (31). 

 

( ) ( )( )

2

2212 1 2 cos 2
i

e
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Et
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 (31) 

 

where ki is the elastic interactive shear buckling coefficient of CSWs. The 

detailed solution process of the coefficient ki is given below. 

 

2.4.2. Calculation of the interactive shear buckling coefficient ki 

    According to Eq. (28) and using some mathematical softwares, the 

interactive shear buckling coefficient ki can be calculated easily. According to 

Eq. (29), the coefficient ki for CSWs with a=c is associated with the aspect ratio 

*h l  and the parameter sin
2

a

t


.  

Table 2 shows that the parameter a/t varies from 16 to 54. For CSWs used 

in actual bridges, values of θ between 30° and 45° are typical [31], so the 

parameter sin
2

a

t


 normally varies from 4 to 21. Table 8 shows the values of 

ki in the case of 
* 6h l   and 0 sin 30

2

a

t


  . The coefficient ki for CSWs 

with a=c can be calculated by linear interpolation.  

 

 

Table 8 

The interactive shear buckling coefficient of CSWs ki 

h/l 

( )sin 2a t  
1 1.5 2 2.5 3 4 6 

0 92.0294 69.7779 64.6068 59.5429 57.6401 55.5123 54.0737 

0.25 93.1769 70.4358 65.1533 60.1504 58.2841 56.2034 54.7502 

0.5 96.4737 72.3623 66.7412 61.6682 59.7653 57.7165 56.2556 

0.75 101.5418 75.4292 69.2377 64.1539 62.2492 60.0918 58.6002 

1 107.9047 79.4587 72.4772 67.3685 65.4597 63.3175 61.8178 

1.25 115.1066 84.2573 76.3023 71.1993 69.2471 67.1066 65.6054 

1.5 122.7766 89.6403 80.5822 75.4736 73.5211 71.3398 69.8362 

1.75 130.6405 95.4438 85.2126 80.0664 78.1059 75.9049 74.4034 

2 138.5077 101.529 90.1107 85.0094 83.0432 80.8299 79.3286 

2.25 146.2490 107.7805 95.2084 90.1018 88.1264 85.8974 84.3952 

2.5 153.7778 114.1043 100.4489 95.3454 93.3434 91.1428 89.6401 

2.75 161.0361 120.4235 105.7836 100.2358 98.1972 96.0022 94.5007 

3 167.9851 126.6760 111.1704 104.6219 102.5653 100.3454 98.6773 

3.25 174.5993 132.8113 116.5728 109.0573 106.9074 104.6971 102.0138 

3.5 180.8631 138.7891 121.9590 113.5325 110.5256 108.2896 105.3762 

3.75 186.7687 144.5771 127.3010 118.0361 114.1704 111.9992 108.7868 

4 192.3144 150.1502 132.5740 122.5558 117.8456 115.6795 112.2527 

4.25 197.5036 155.4890 137.7565 127.0794 121.5508 119.3297 115.7745 

4.5 202.3438 160.5796 142.8289 131.5948 125.2828 123.0553 119.3492 

4.75 206.8458 165.4126 147.7743 136.0904 129.0371 126.7668 122.9721 

5 211.0229 169.9825 152.5772 140.5553 132.8082 129.9071 126.6377 

5.5 218.4650 178.3284 161.7019 149.3521 140.3772 135.0183 132.0734 

6 224.8047 185.6367 170.1093 157.9097 147.9408 140.2147 137.4093 

6.5 230.1828 191.9637 177.7254 166.1610 155.4507 145.4974 142.7003 

7 234.7358 197.3909 184.4964 174.0451 162.8600 150.8560 148.1038 

7.5 238.5894 202.0147 190.3940 181.5032 170.1220 156.2740 153.4890 

8 241.8551 205.9366 195.4237 188.4706 177.1872 161.7319 159.0231 

9 246.9941 212.0662 203.1006 197.9587 190.4379 172.6793 169.9498 

10 249.6481 216.4745 208.2566 203.1951 196.9761 183.4995 178.9182 

12 252.7794 222.0752 214.1494 209.0746 203.8849 193.4008 190.8814 

14 254.6094 225.2856 217.2037 212.2282 208.4515 204.5305 202.8039 

16 255.7683 227.2733 219.0022 214.6838 211.9712 209.8780 208.0037 

18 256.5482 228.5854 220.1599 215.6484 212.9664 210.7748 209.0133 

20 257.0984 229.4967 220.9213 216.3216 213.6575 211.4042 209.6595 

22 257.5011 230.1558 221.4389 216.8106 214.1583 211.8635 210.0977 

24 257.805 230.6483 221.8279 217.1773 214.5333 212.2091 210.4349 

26 258.0399 231.0262 222.1278 217.4597 214.8217 212.4759 210.6952 

28 258.2253 231.3226 222.3639 217.6818 215.0485 212.6861 210.9005 

30 258.3743 231.5596 222.5532 217.8598 215.2300 212.8548 211.0652 
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2.5. Discussion of the local, global and interactive shear buckling stresses 

 

Three shear buckling modes are discussed theoretically in this paper. Local 

buckling is the buckling of a panel and solved by analyzing a single flat panel 

under shear force, whereas global buckling is the buckling of the whole CSW 

and solved by treating the whole CSW as an orthotropic plate. Interactive 

buckling is the buckling of 2~4 panels and solved by treating the 2~4 panels as 

a folded plate. 

    Theoretically, the local shear buckling stress 
e

l  is associated with t/p, p/h 

which can be seen from Eqs. (4)-(7), whereas the global shear buckling stress 
e

g  is associated with θ, d/h and t/d which can be seen from Eqs. (17)-(20). The 

interactive shear buckling stress 
e

i  is associated with the geometric 

dimensioning of CSWs which can be seen from Eqs. (28)-(31). When CSWs 

have equal d/t, p/h and θ values, they will have an equal t/p ratio which affects 

the local shear buckling stress 
e

l , and equal d/h and t/d ratios which affect the 

global shear buckling stress 
e

g . In the case of a=c, they will have an equal 

( )( )2 cos 2h a =  and ( )( )cos 2t a   which affect the interactive 

shear buckling stress 
e

i . For CSWs with equal d/t, a/h and θ values, buckling 

stresses 
e

l , 
e

g , and 
e

i  will theoretically be equal.  

 

3.  Finite element analysis 

 

An elastic FEA is carried out in the ANSYS software [32] to study the 

influence of d/t, a/h and θ on the shear buckling stress of CSWs and to see if the 

analytical formulas are correct. According to Yi et al. [15], a/h=0.1~0.2 and 

d/t=10~25 in actual bridges. In this study, conservatively adopting a/h=0.1~0.3 

and d/t=10~30, while other geometric parameters are taken as: θ=30°~45° and 

t=8mm~12mm. The span of the girders is set as 20q. In addition, the width and 

the thickness of flanges are 8d and 80mm respectively. There are three stiffeners 

and their behavior is assumed to be rigid. 

 

3.1. Finite element model 

 

A shell element (shell 181) is used to model the girders with CSWs. The 

finite element model is shown in Fig. 6 and the boundary conditions are given 

in Table 9. A concentrated load is applied at the midspan (point 2). All models 

adopt a symmetry boundary condition with roller supports at the intersection 

nodes of the bottom flange and the end stiffeners, and Point 1 restrained in the 

longitudinal direction (x direction) [26]. In addition, Point 1 and Point 2 are 

restrained in the lateral direction (z direction) to avoid lateral-torsion buckling. 

 

Roller support

Roller support

Point 1

Point 2

Concentrated Load

z x

y

 

Fig. 6 Load and boundary conditions of a girder with CSWs 

 

Table 9  

Boundary conditions of finite element models 

Boundary δx δy δz θx θy θz 

Roller support ○ ● ● ● ● ○ 

Point 1 ● ○ ● ○ ○ ○ 

Point 2 ○ ○ ● ○ ○ ○ 

Note: ○: Free; ●: Restrained. 

 

In this study, the number of elements per sub-panel is 6, as suggested by 

Eldib [3], and the element mesh size is a/6. The elastic modulus and Poisson's 

ratio of steel are taken as 210000MPa and 0.3 respectively. Fig. 7 represents 

three shear buckling modes of CSWs.  

 

 

 
(a) Local shear buckling 

 
(b) Global shear buckling 

 
(c) Interactive shear buckling 

Fig. 7 Three shear buckling modes 
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3.2. Parametric analysis 

 

Theoretically, in the case of a=c, and equal d/t, a/h and θ, the elastic local 

shear buckling stress e

l , global shear buckling stress e

g , and interactive shear 

buckling stress 
e

i  should be equal. It can be seen from Fig. 8 that for CSWs 

with different web thicknesses but equal d/t, a/h and θ when a=c, the FEA 

results e

FEA  are indeed practically the equal which is in good agreement with 

the theoretical expectations. e

FEA  is the maximum shear stress of CSWs from 

FEA. It is worth mentioning that the d/t, a/h and θ are the determining factors, 

rather than t. In what follows, t=10mm is adopted. 

The influence of d/t, a/h and θ on the elastic shear buckling stress is shown 

in Tables 10-12 and Figs. 9-10. It can be seen from Tables 10-12 and Figs. 9-10 

that, apart from the global shear buckling modes with small d/t and small a/h, 

the FEA results agree well with the theoretical results e

cr . The elastic shear 

buckling stress of CSWs e

cr  is controlled by the minimum value of local, 

global and interactive shear buckling stress, and can be calculated by Eq. (32). 

 

( ), ,
minimum , ,e e e e

cr l s g s i   =  (32) 

 

It can be seen from Fig. 9 that the shear buckling stress greatly decreases 

with the increase of d/t. That is to say, improving the thickness of CSWs is an 

effective method to improve the shear buckling stress of CSWs. It can be seen 

from Fig. 10 (a) that the shear buckling stress increases with the increase of a/h. 

However, with the increase of a/h, the buckling stress e

FEA  shows a 

converging trend. It can be seen from Fig. 10 (b) that the shear buckling stress 

increases with the increase of θ. Though improving θ can improve the shear 

buckling stress, θ=30°~45° is adopted in actual engineering because larger θ 

need more steel and is not economic. 
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Fig. 8 Influence of t on the elastic shear buckling stress e
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 (a) θ=30°                                                          (b) θ=45° 

Fig. 9 Influence of d/t on the elastic shear buckling stress 
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 (a) a/h                                                          (b) θ 

Fig. 10 Influence of a/h and θ on the elastic shear buckling stress 

 

 



Su-mei Liu et al. 358 

 

Table 10 

Elastic shear buckling stress of CSWs with different d/t  

θ 

(O) 
a/h d/t 

a 

(mm) 

b 

(mm) 

d 

(mm) 

h 

(mm) 

τl,s 

(Mpa) 

τg,s 

(Mpa) 

τi 

(Mpa) 

τcr 

(Mpa) 

τFEA 

(Mpa) 

e

FEA cr   
Buckling 

mode 

  10 200 173 100 2000 2553 818 1673 818 1180 1.442 G 

  12 240 208 120 2400 1773 743 1260 743 940 1.266 G 

  14 280 242 140 2800 1302 684 998 684 782 1.142 G 

  16 320 277 160 3200 997 638 821 638 665 1.043 G 

  18 360 312 180 3600 788 599 692 599 578 0.965 G 

 0.1 20 400 346 200 4000 638 567 589 567 511 0.903 G 

  22 440 381 220 4400 527 539 502 502 457 0.910 I 

  24 480 416 240 4800 443 514 435 435 412 0.947 I 

  26 520 450 260 5200 378 493 382 378 374 0.991 L 

  28 560 485 280 5600 326 474 337 326 342 1.050 L 

30  30 600 520 300 6000 284 457 297 284 314 1.105 L 

  10 200 173 100 1000 2610 3272 1832 1832 1664 0.908 I 

  12 240 208 120 1200 1812 2971 1428 1428 1354 0.949 I 

  14 280 242 140 1400 1332 2738 1155 1155 1129 0.977 I 

  16 320 277 160 1600 1019 2551 953 953 935 0.981 I 

  18 360 312 180 1800 805 2396 789 789 781 0.990 I 

 0.2 20 400 346 200 2000 652 2266 654 652 662 1.015 L 

  22 440 381 220 2200 539 2155 549 539 566 1.050 L 

  24 480 416 240 2400 453 2058 467 453 489 1.079 L 

  26 520 450 260 2600 386 1972 401 386 426 1.103 L 

  28 560 485 280 2800 333 1897 349 333 373 1.121 L 

  30 600 520 300 3000 290 1828 306 290 329 1.135 L 

  10 141 100 100 1414 5106 1706 3717 1706 2444 1.433 G 

  12 170 120 120 1697 3546 1549 2806 1549 1960 1.266 G 

  14 198 140 140 1980 2605 1427 2229 1427 1640 1.149 G 

  16 226 160 160 2263 1994 1330 1837 1330 1408 1.059 G 

 0.1 18 255 180 180 2546 1576 1249 1546 1249 1229 0.984 G 

  20 283 200 200 2828 1276 1182 1302 1182 1093 0.925 G 

  22 311 220 220 3111 1055 1124 1112 1055 982 0.931 L 

  24 339 240 240 3394 886 1073 965 886 890 1.004 L 

  26 368 260 260 3677 755 1028 848 755 809 1.071 L 

  28 396 280 280 3960 651 989 741 651 723 1.110 L 

45  30 424 300 300 4243 567 953 653 567 637 1.123 L 

  10 141 100 100 707 5220 6823 4061 4061 3444 0.848 I 

  12 170 120 120 849 3625 6195 3162 3162 2841 0.899 I 

  14 198 140 140 990 2663 5709 2556 2556 2349 0.919 I 

  16 226 160 160 1131 2039 5320 2102 2039 1931 0.947 L 

  18 255 180 180 1273 1611 4998 1731 1611 1603 0.995 L 

 0.2 20 283 200 200 1414 1305 4727 1431 1305 1353 1.037 L 

  22 311 220 220 1556 1078 4494 1202 1078 1155 1.071 L 

  24 339 240 240 1697 906 4292 1021 906 995 1.098 L 

  26 368 260 260 1838 772 4114 878 772 862 1.116 L 

  28 396 280 280 1980 666 3955 763 666 760 1.142 L 

  30 424 300 300 2121 580 3813 669 580 670 1.155 L 

Average  1.054  

Coefficient of variation 0.122  

Average (G) 1.131  

Coefficient of variation (G) 0.165  

Average (I and L) 1.024  

Coefficient of variation (I and L) 0.083  
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Table 11 

Elastic shear buckling stress of CSWs with different a/h  

θ 

(O) 
d/t a/h 

a 

(mm) 

b 

(mm) 

d 

(mm) 

h 

(mm) 

τl,s 

(Mpa) 

τg,s 

(Mpa) 

τi 

(Mpa) 

τcr 

(Mpa) 

τFEA 

(Mpa) 
e

FEA cr   
Buckling 

mode 

  0.1 320 277 160 3200 997 638 821 638 665 1.043 G 

  0.12 320 277 160 2667 1000 918 827 827 736 0.890 I 

  0.14 320 277 160 2286 1004 1250 854 854 803 0.940 I 

  0.16 320 277 160 2000 1009 1632 891 891 863 0.968 I 

  0.18 320 277 160 1778 1014 2066 923 923 918 0.994 I 

 16 0.2 320 277 160 1600 1019 2551 953 953 935 0.981 I 

  0.22 320 277 160 1455 1026 3086 971 971 959 0.987 I 

  0.24 320 277 160 1333 1032 3673 984 984 974 0.990 I 

  0.26 320 277 160 1231 1040 4311 995 995 991 0.996 I 

  0.28 320 277 160 1143 1048 4999 1010 1010 1017 1.007 I 

30  0.3 320 277 160 1067 1057 5739 1022 1022 1038 1.016 I 

  0.1 440 381 220 4400 527 539 502 502 457 0.911 I 

  0.12 440 381 220 3667 529 776 505 505 508 1.005 I 

  0.14 440 381 220 3143 531 1056 516 516 547 1.060 I 

  0.16 440 381 220 2750 534 1379 530 530 556 1.049 I 

  0.18 440 381 220 2444 536 1745 541 536 562 1.048 L 

 22 0.2 440 381 220 2200 539 2155 549 539 566 1.050 L 

  0.22 440 381 220 2000 542 2607 556 542 577 1.064 L 

  0.24 440 381 220 1833 546 3103 561 546 585 1.071 L 

  0.26 440 381 220 1692 550 3642 566 550 599 1.089 L 

  0.28 440 381 220 1571 554 4224 572 554 609 1.099 L 

Average 1.012  

Coefficient of variation 0.055  

 

Table 12 

Elastic shear buckling stress of CSWs with different θ 

d/t a/h 
θ 

(O) 

a 

(mm) 

b 

(mm) 

d 

(mm) 

h 

(mm) 

τl,s 

(Mpa) 

τg,s 

(Mpa) 

τi 

(Mpa) 

τcr 

(Mpa) 

τFEA 

(Mpa) 
e

FEA cr   
Buckling 

mode 

  30 360 312 360 3600 788 599 692 599 578 0.965 G 

  33 330 277 330 3305 935 716 824 716 695 0.971 G 

 0.1 36 306 248 306 3062 1089 840 964 840 818 0.974 G 

  39 286 222 286 2860 1248 971 1110 971 950 0.978 G 

  42 269 200 269 2690 1411 1108 1260 1108 1087 0.981 G 

18  45 255 180 255 2546 1576 1249 1414 1249 1229 0.984 G 

  30 360 312 360 1800 805 2396 789 789 781 0.990 I 

  33 330 277 330 1652 956 2863 950 950 936 0.985 I 

 0.2 36 306 248 306 1531 1113 3361 1126 1113 1095 0.984 L 

  39 286 222 286 1430 1276 3885 1315 1276 1266 0.992 L 

  42 269 200 269 1345 1443 4432 1516 1443 1426 0.989 L 

  45 255 180 255 1273 1611 4998 1729 1611 1603 0.995 L 

Average 0.982  

Coefficient of variation 0.009  
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Fig. 11 Influence of d/t and a/h on 
,

e e

FEA g s   

The boundary condition of the global buckling mode is complicated. Fig. 

11 shows the ratios of 
e

FEA  to 
,

e

g s  varies with d/t and a/h in the case of 

( ), ,
  ,e e e

g s l s iminimum    which the global buckling becomes the primary 

failure mode. It can be seen from Fig. 11 that 
,

e e

FEA g s   decreases with the 

increase of d/t and a/h. That is to say, the constraint effect of flanges on CSWs 

gradually decreases with the increase of d/t and a/h. Although the ratios of 
e

FEA  to 
,

e

g s  are high for small d/t and a/h, the simple support boundary 

condition is adopted for conservative consideration. 
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4.  Shear design of CSWs 

 

Considering material nonlinearity and yielding, the formula for the elastic 

shear buckling stress cannot keep up with the actual. So a formula which can 

reflect the actual shear strength needs to be proposed. Important work has been 

done by Elgaaly [22], Driver [23], El Metwally [17], Yi et al. [15], Sause [31], 
Nie et al.[21]. The previous design formulas may be not precise because 

adopting the interactive shear buckling stress formula which based on the 

relationship between the local and global shear buckling stresses, and the yield 
stress only. All the previous elastic interactive formulas adopt 

( ) ( ) ( )1  1 1
i l g

nn n
e e e  = + , n=1~4 [15], show that the interactive shear buckling 

stress is the minimum value of the three shear buckling modes, which is not 

reasonable and lacks theoretical support. Unlike the past, in this study, the 

formulas for the elastic global and interactive shear buckling stresses proposed 
in section 2 are used in the design formula. 

    Eq. (33) was provided to calculate the ultimate shear strength of CSWs in 

the design manual for PC bridges with CSWs [33].  

 

( )
2

1 0.6

1 0.614 0.6 0.6 2

1/ 2

cr

cr y cr cr

cr cr



   

 




=  − −  




 (33) 

 

*e

cr y cr  =  (34) 

 

For conservative consideration, *e

cr  adopts Eq. (32) introducing a 

modification factor. 

 

( )*

, ,
minimum 0.85 , , 0.85e e e e

cr l s g s i   =  (35) 

 

where 
y  is the shear yield stress and can be calculated by 3y yf = , fy is 

the uniaxial yield stress. 

Eq. (33) is verified by using published experimental results of 102 
specimens obtained by Elgaaly et al. [22], Lindner et al. [34], Peil [35], Gil et 

al. [36], Abbas et al. [18], Moon et al.[24]. Tables 13-18 show a comparison 

between the shear strength calculated by Eq. (33) and four previous design 
methods and experimental results τe [31]. In Tables 13-18, τn,A, τn,B, τn,M, τn,Y are 

the shear strength of CSWs calculated by the four previous design methods 

proposed by Driver [23], Sause [31], El Metwally [17], Yi et al. [15]. Fig. 12 

shows the normalized shear capacity 
e y   and 

e cr   versus 
cr . It can 

be seen that all the tests have a ratio 0.8e cr   .

Table 13  

Comparison between the shear strength calculated by the proposed design formulas and the test results obtained by Elgaaly et al.[22] 

Specimen e/h 
a 

(mm) 

b 

(mm) 

θ 

(O) 

h 

(mm) 

t 

(mm) 

τy 

(Mpa) 

τe 

(Mpa) 
λcr 

τcr 

(Mpa) 
τe/τcr τe/τn,A τe/τn,B τe/τn,M τe/τn,Y 

V-PILOTA 1 38.1 25.4 45 304.8 0.7823 358 346.54 1.03 262.5 1.320 1.404 1.349 1.316 1.363 

V-PILOTB 1 38.1 25.4 45 304.8 0.7849 368 347.54 1.05 267.4 1.300 1.177 1.132 1.109 1.149 

V121216A 1 38.1 25.4 45 304.8 0.6375 389.8 257.3 1.32 216.4 1.189 1.159 1.132 1.178 1.194 

V121216B 1 38.1 25.4 45 304.8 0.7645 383.8 375.8 1.10 267.0 1.408 1.464 1.41 1.405 1.452 

V181216B 0.67 38.1 25.4 45 457.2 0.6096 356.8 334.9 1.33 197.0 1.700 1.649 1.64 1.768 1.993 

V181216C 0.67 38.1 25.4 45 457.2 0.7595 391.5 343.9 1.12 267.1 1.288 1.325 1.316 1.385 1.539 

V181816A 1 38.1 25.4 45 457.2 0.635 341.3 257.2 1.25 205.5 1.252 1.22 1.228 1.311 1.449 

V181816B 1 38.1 25.4 45 457.2 0.7366 354.2 285.4 1.10 246.3 1.159 1.203 1.185 1.232 1.359 

V241216A 0.5 38.1 25.4 45 609.6 0.635 341.3 195.1 1.25 205.2 0.951 0.996 1.01 1.129 1.374 

V241216B 0.5 38.1 25.4 45 609.6 0.7874 339.2 277.7 1.03 250.1 1.110 1.238 1.252 1.343 1.523 

V121221A 1 41.9 23.4 55 304.8 0.6299 383.8 240.8 1.46 179.8 1.339 1.27 1.226 1.277 1.236 

V121221B 1 41.9 23.4 55 304.8 0.7849 383.8 302.9 1.17 248.9 1.217 1.227 1.194 1.202 1.189 

V122421A 2 41.9 23.4 55 304.8 0.6756 358 210 1.32 200.7 1.046 1.023 0.998 1.028 0.996 

V122421B 2 41.9 23.4 55 304.8 0.7823 368 256.5 1.15 243.3 1.054 1.073 1.04 1.041 1.031 

V181221A 0.67 41.9 23.4 55 457.2 0.6096 333.4 221.7 1.41 167.1 1.327 1.274 1.236 1.302 1.356 

V181221B 0.67 41.9 23.4 55 457.2 0.762 349.6 280.7 1.16 230.0 1.220 1.236 1.204 1.23 1.29 

V181821A 1 41.9 23.4 55 457.2 0.635 318.3 194.4 1.32 176.6 1.101 1.07 1.046 1.095 1.13 

V181821B 1 41.9 23.4 55 457.2 0.7366 343.9 277.2 1.19 219.9 1.260 1.26 1.234 1.268 1.326 

V241221A 0.5 41.9 23.4 55 609.6 0.6096 351.7 207.8 1.45 166.7 1.247 1.177 1.159 1.26 1.468 

V241221B 0.5 41.9 23.4 55 609.6 0.762 368.5 272.6 1.19 235.1 1.159 1.157 1.165 1.248 1.399 

V121232A 1 49.8 26.4 62.5 304.8 0.6401 383.8 210.8 1.70 132.2 1.594 1.83 1.781 1.831 1.803 

V121232B 1 49.8 26.4 62.5 304.8 0.7798 369.9 257.1 1.37 194.4 1.323 1.594 1.536 1.596 1.499 

V121832A 1.5 49.8 26.4 62.5 304.8 0.6401 405.8 176.6 1.75 132.2 1.336 1.526 1.488 1.526 1.511 

V121832B 1.5 49.8 26.4 62.5 304.8 0.9195 324.2 190.3 1.09 226.7 0.840 0.963 0.947 0.964 0.906 

V122432A 2 49.8 26.4 62.5 304.8 0.6401 411.8 159.5 1.76 132.2 1.206 1.376 1.343 1.377 1.365 

V122432B 2 49.8 26.4 62.5 304.8 0.7772 366 206.4 1.37 192.9 1.070 1.289 1.242 1.29 1.211 

V181232A 0.67 49.8 26.4 62.5 457.2 0.5969 318.2 188.9 1.67 113.7 1.661 1.895 1.842 1.899 1.921 

V181232B 0.67 49.8 26.4 62.5 457.2 0.7493 347.5 233.6 1.39 178.4 1.309 1.563 1.507 1.569 1.545 

V181832A 1 49.8 26.4 62.5 457.2 0.6096 397.8 189.8 1.83 118.6 1.600 1.797 1.757 1.801 1.854 

V181832B 1 49.8 26.4 62.5 457.2 0.7493 334.6 229.4 1.37 177.2 1.295 1.547 1.49 1.552 1.518 

V241232A 0.5 49.8 26.4 62.5 609.6 0.6223 388.5 182 1.78 123.1 1.478 1.662 1.622 1.674 1.798 

V241232B 0.5 49.8 26.4 62.5 609.6 0.762 337.1 218.3 1.35 181.6 1.202 1.43 1.38 1.447 1.496 

V121809A 1.5 19.8 11.9 50 304.8 0.7061 330.2 293.3 0.79 291.1 1.007 1.256 1.163 1.066 1.119 

V121809C 1.5 19.8 11.9 50 304.8 0.6325 385.8 285.9 0.88 318.9 0.896 1.048 1.003 0.97 1.04 

V122409A 2 19.8 11.9 50 304.8 0.7137 338.1 265.6 0.80 296.6 0.895 1.111 1.03 0.947 0.994 

V122409C 2 19.8 11.9 50 304.8 0.6629 358 286 0.84 305.4 0.937 1.13 1.062 1.001 1.063 

V181209A 0.67 19.8 11.9 50 457.2 0.5588 397.8 316.7 1.39 205.2 1.544 1.672 1.621 1.722 1.883 

V181209C 0.67 19.8 11.9 50 457.2 0.6096 341.6 318.3 1.26 203.7 1.563 1.694 1.65 1.73 1.779 

V181809A 1 19.8 11.9 50 457.2 0.6096 356.7 295 1.28 206.7 1.427 1.551 1.507 1.584 1.637 

V181809C 1 19.8 11.9 50 457.2 0.6223 322.4 272.6 1.21 200.7 1.358 1.468 1.436 1.495 1.525 

V241209A 0.5 19.8 11.9 50 609.6 0.6223 349.6 186.4 1.69 122.9 1.517 1.553 1.505 1.565 1.654 

V241209C 0.5 19.8 11.9 50 609.6 0.635 358 204.8 1.70 124.2 1.649 1.686 1.635 1.698 1.792 

Average 1.270 1.363 1.326 1.367 1.422 

Coefficient of variation (C.V.) 0.175 0.182 0.182 0.194 0.198 
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Table 14 

Comparison between the shear strength calculated by the proposed design formulas and the test results obtained by Lindner et al. [34]  

Specimen e/h 
a 

(mm) 

b 

(mm) 

θ 

(O) 

h 

(mm) 

t 

(mm) 

τy 

(Mpa) 

τe 

(Mpa) 
λcr 

τcr 

(Mpa) 
τe/τcr τe/τn,A τe/τn,B τe/τn,M τe/τn,Y 

L1A 0.98 140 50 45 994 1.94 169 145.5 1.00 127.1 1.144 1.259 1.210 1.190 1.235 

L1B 0.99 140 50 45 994 2.59 193 194.5 0.80 168.9 1.152 1.426 1.316 1.202 1.266 

L2A 1.04 140 50 45 1445 1.94 163 120.3 0.99 124.1 0.970 1.069 1.050 1.072 1.178 

L2B 1.04 140 50 45 1445 2.54 183 153.7 0.80 160.5 0.958 1.187 1.120 1.080 1.180 

L3A 1 140 50 45 2005 2.01 162 111.9 1.07 115.7 0.967 1.065 1.080 1.165 1.324 

L3B 1 140 50 45 2005 2.53 173 152.6 1.04 126.7 1.204 1.338 1.312 1.361 1.484 

B1 1.33 140 50 45 600 2.1 197 165.1 0.99 150.0 1.100 1.225 1.174 1.136 1.122 

B4 1.33 140 50 45 600 2.11 210 144.9 1.02 156.4 0.926 1.022 0.981 0.958 0.944 

B4b 1.33 140 50 45 600 2.11 210 171.8 1.02 156.4 1.098 1.212 1.163 1.136 1.120 

B3 1.33 140 50 45 600 2.62 183 156.5 0.76 164.6 0.950 1.209 1.105 0.976 0.974 

B2 1.17 140 50 45 600 2.62 182 173.8 0.76 164.0 1.060 1.350 1.234 1.088 1.086 

M101 1 70 15 45 600 0.99 109 89.2 0.79 96.2 0.927 1.156 1.086 1.039 1.133 

M102 1 70 15 45 800 0.99 110 100.0 1.00 83.0 1.205 1.354 1.326 1.370 1.500 

M103 1 70 15 45 1000 0.95 123 88.4 1.34 67.4 1.313 1.443 1.413 1.526 1.748 

M104 1 70 15 45 1200 0.99 109 87.4 1.49 48.9 1.789 1.922 1.862 1.975 2.200 

L1 1.5 106 86.6 30 1000 2.1 237 181.1 0.83 203.0 0.892 1.081 1.013 0.962 1.039 

L1 1.49 106 86.6 30 1000 3 260 203.6 0.65 251.3 0.810 1.107 1.003 0.884 0.931 

L2 1.44 106 86.6 30 1498 2 217 200.3 0.98 166.5 1.203 1.354 1.336 1.384 1.531 

L2 1.43 106 86.6 30 1498 3 232 201.4 0.91 188.0 1.071 1.229 1.186 1.145 1.201 

No.1 1.33 102 85.5 33 850 2 205 161.7 0.78 182.0 0.889 1.116 1.024 0.921 0.960 

No.2 1.33 91 71.5 38.2 850 2 201 155.6 0.69 189.6 0.820 1.094 0.990 0.861 0.890 

V1/1 9.46 144 102 45 298 2.05 172 111.3 0.92 138.7 0.803 0.938 0.899 0.863 0.821 

V1/2 6.71 144 102 45 298 2.1 163 111.7 0.87 136.0 0.821 0.968 0.930 0.876 0.838 

V1/3 3.36 144 102 45 298 2 172 135.9 0.94 136.2 0.997 1.161 1.113 1.077 1.020 

V2/3 2.75 144 102 45 600 3 161 130.4 0.64 156.8 0.832 1.146 1.031 0.869 0.833 

Average 1.036 1.217 1.158 1.125 1.182 

C.V. 0.206 0.164 0.173 0.225 0.269 

 

Table 15 

Comparison between the shear strength calculated by the proposed design formulas and the test results obtained by Gil et al. [36] 

Specimen e/h a 

(mm) 

b 

(mm) 

θ 

（O） 

h 

(mm) 

t 

(mm) 

τy 

(Mpa) 

τe 

(Mpa) 
λcr 

τcr 

(Mpa) 
τe/τcr τe/τn,A τe/τn,B τe/τn,M τe/τn,Y 

L1 NA 450 300 33.7 1500 4.8 144.3 103.8 1.174 93.4 1.111 1.188 1.167 1.188 1.103 

L2 NA 550 300 32.2 1500 4.8 144.3 87 1.413 72.2 1.205 1.328 1.280 1.328 1.214 

L3 NA 450 300 9.4 1500 4.8 144.3 74 1.192 91.9 0.806 0.847 0.836 0.870 0.905 

L4 NA 550 300 10.6 1500 4.8 144.3 66 1.413 72.2 0.914 1.007 0.972 1.018 1.043 

G1 NA 200 180 14.2 2000 4.8 144.3 114.4 0.917 116.2 0.985 1.133 1.090 1.053 1.092 

G2 NA 160 50 33.4 2000 3.8 144.3 120.4 1.143 96.2 1.252 1.366 1.346 1.384 1.388 

G3 NA 160 100 15.1 2000 3.8 144.3 122.7 1.391 74.2 1.653 1.852 1.786 1.866 1.871 

I1 NA 320 100 24.0 2000 4.8 144.3 137.1 0.862 121.1 1.132 1.343 1.321 1.338 1.480 

I2 NA 350 100 16.0 2000 3.8 144.3 74.6 1.265 85.4 0.874 1.054 1.038 1.174 1.481 

Average 1.103 1.235 1.204 1.247 1.286 

C.V. 0.233 0.234 0.229 0.230 0.231 

Note: NA-Not available 

 

Table 16 

Comparison between the shear strength calculated by the proposed design formulas and the test results ob-tained by Peil [35] 

Specimen e/h 
a 

(mm) 

b 

(mm) 

θ 

（O） 

h 

(mm) 

t 

(mm) 

τy 

(Mpa) 

τe 

(Mpa) 
λcr 

τcr 

(Mpa) 
τe/τcr τe/τn,A τe/τn,B τe/τn,M τe/τn,Y 

SP1 2.19 146 104 45 800 2 177 140.7 1.03 129.9 1.083 1.189 1.143 1.120 1.080 

SP2 2.19 170 80 45 800 2 172 134.3 1.18 110.6 1.214 1.274 1.254 1.277 1.209 

SP3 2.19 185 65 45 800 2 168 130.7 1.27 99.2 1.317 1.397 1.358 1.400 1.322 

SP4 2.25 117 83 45 800 2 172 144.5 0.82 148.8 0.971 1.188 1.097 0.988 0.986 

SP5 2.25 136 64 45 800 2 168 138.1 0.94 133.0 1.038 1.163 1.118 1.059 1.059 

SP6 2.25 148 52 45 800 2 169 137.1 1.02 125.1 1.096 1.204 1.156 1.134 1.135 

SP2-2-400 1 2.5 170 80 45 400 2 152 100.6 1.06 109.1 0.922 1.029 1.001 1.001 0.934 

SP2-2-400 2 2.5 170 80 45 400 2 152 110.5 1.06 109.1 1.013 1.130 1.099 1.099 1.026 

SP2-2-800 1 1.25 170 80 45 800 2 157 111.8 1.13 106.0 1.054 1.119 1.094 1.100 1.049 

SP2-2-800 2 1.25 170 80 45 800 2 157 111.0 1.13 106.0 1.047 1.112 1.087 1.093 1.042 

SP2-3-600 1 1.67 170 80 45 600 3 170 167.8 0.77 151.9 1.104 1.396 1.280 1.134 1.109 

SP2-3-600 2 1.67 170 80 45 600 3 170 171.7 0.77 151.9 1.130 1.429 1.310 1.161 1.135 

SP2-3-1200 1 0.83 170 80 45 1200 3 170 170.0 0.79 150.2 1.132 1.415 1.298 1.161 1.188 

SP2-3-1200 2 0.83 170 80 45 1200 3 170 173.9 0.79 150.2 1.158 1.447 1.327 1.188 1.215 

SP2-4-800 1 1.25 170 80 45 800 4 188 188.0 0.62 186.0 1.011 1.415 1.269 1.063 1.033 

SP2-4-800 2 1.25 170 80 45 800 4 188 188.6 0.62 186.0 1.014 1.419 1.273 1.066 1.036 

SP2-4-1600 1 0.63 170 80 45 1600 4 189 189.6 0.63 185.9 1.020 1.418 1.278 1.104 1.147 

SP2-4-1600 2 0.63 170 80 45 1600 4 189 191.3 0.63 185.9 1.029 1.432 1.290 1.114 1.158 

SP2-8-800 1 1.25 170 80 45 800 8 156 205.0 0.28 156.0 1.314 1.858 1.656 1.319 1.314 

SP2-8-800 2 1.25 170 80 45 800 8 156 215.4 0.28 156.0 1.381 1.952 1.739 1.385 1.381 

Average 1.102 1.349 1.256 1.148 1.128 

C.V. 0.110 0.173 0.145 0.100 0.104 
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Table 17 

Comparison between the shear strength calculated by the proposed design formulas and the test results ob-tained by Abbas et al.[18] 

Specimen e/h 
a 

(mm) 

b 

(mm) 

θ 

（O） 

h 

(mm) 

t 

(mm) 

τy 

(Mpa) 

τe 

(Mpa) 
λcr 

τcr 

(Mpa) 
τe/τcr τe/τn,A τe/τn,B τe/τn,M τe/τn,Y 

G8A 3 300 200 36.9 1500 6.3 268 228.6 0.88 221.9 1.030 1.207 1.12 1.017 1.023 

G7A 3 300 200 36.9 1500 6.3 268 243.1 0.88 221.9 1.095 1.282 1.188 1.077 1.084 

SC1 3 300 200 36.9 1500 6.3 268 213.3 0.88 221.9 0.961 1.126 1.045 0.949 0.955 

Average 1.029 1.205 1.118 1.014 1.021 

C.V. 0.065 0.065 0.064 0.063 0.063 

 

Table 18.  

Comparison between the shear strength calculated by the proposed design formulas and the test results obtained by Moon et al. [24] 

Specimen e/h 
a 

(mm) 

b 

(mm) 

θ 

（O） 

h 

(mm) 

t 

(mm) 

τy 

(Mpa) 

τe 

(Mpa) 
λcr 

τcr 

(Mpa) 
τe/τcr τe/τn,A τe/τn,B τe/τn,M τe/τn,Y 

MI2 0.803 250 220 17.2 2000 4 170.9 109.2 0.93 136.1 0.803 0.904 0.889 0.9 0.996 

MI3 0.728 220 180 14.6 2000 4 170.9 105.4 1.01 127.6 0.826 0.872 0.837 0.822 0.899 

MI4 0.887 220 180 18.7 2000 4 170.9 131.6 0.84 146.2 0.900 1.089 1.013 0.955 1.036 

Average 0.843 0.955 0.913 0.892 0.977 

C.V. 0.061 0.123 0.099 0.075 0.072 

 

Table 19 

Comparison between test results and theoretical results 

Specimen Num. τe/τcr τe/τn,A τe/τn,B τe/τn,M τe/τn,Y 

  Mean C.V. Mean C.V. Mean C.V. Mean C.V. Mean C.V. 

All 102 1.146 0.199 1.297 0.188 1.242 0.187 1.230 0.214 1.269 0.231 

e/h>1 and θ≥30o 46 1.028 0.138 1.221 0.165 1.151 0.151 1.086 0.145 1.083 0.148 
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Fig. 12 Comparison between the shear strength calculated by Eq. (33) and the test results 

 

For actual bridges, the distance between two adjacent stiffeners is much 

larger than the web height h, and θ always meets θ≥ 30o [37], so the experimental 

results for the 46 specimens with e/h>1 and θ≥30o are selected. e/h is the shear 

span ratio[31]. The comparison between test results and theoretical results is 

given in Table 19. It can be seen that Eq. (33) which adopts the formulas for the 

elastic global and interactive shear buckling stresses proposed in this study 

provides on average much more accurate predictions of the shear strength of 

CSWs for the 102 specimens, and provides much more accurate predictions 

with the best average value and smallest coefficient of variation for the 46 

specimens. So Eq. (33) is recommended to calculate the shear strength of CSWs. 

    It is worth mentioning that in Table 18, Reference [31] adopted the design 

corrugation depth of CSWs, however according to Reference [24], the negative 

error between the design corrugation depth and the measured corrugation depth 

can reach to 20%. Because the buckling will initiate at the area that has the 

minimum measured corrugation depth [24], the minimum measured corrugation 

depth is adopted in this paper. 

 

5.  Conclusions 

 

In this paper, the shear capacity of CSWs is theoretically and numerically 

studied, and the following main conclusions can be drawn: 

(1) The whole CSW is assumed as an orthotropic plate, and the analytical 

formula for the global shear buckling stress of CSWs is derived by the Galerkin 

method. Simplified formulas of the global shear buckling coefficient kg for a 

four-edge simple support, for a four-edge fixed support, and for two edges 

constrained by flanges fixed and the other two edges simply supported are given.  

(2) The folded plate composed of two adjacent panels is treated as an 

isotropic shallow shell, and the analytical formula for the interactive shear 

buckling stress of CSWs is derived by the Galerkin method. The interactive 

shear buckling coefficient table for CSWs with the same flat panel and inclined 

panel width is given. 

(3) An elastic FEA is carried out to verify the analytical formulas and to 

study the influence of geometric parameters on the shear buckling stress of 

CSWs. Results show that the shear buckling stress greatly decreases with the 

increase of d/t, while increases with the increase of a/h and θ.  

(4) A design formula for the shear strength of CSWs which adopts the 

formulas for the global and interactive shear buckling stresses proposed in this 

paper is assessed. From a comparison between the shear strength calculated by 

this design formula, calculated by four previous design formulas and measured 

in a series of published test results, it is found that the considered design formula 

provides good predictions for the shear strength of CSWs and can be 

recommended. 
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