
                                Advanced Steel Construction Vol. 5, No. 4, pp. 452-464 (2009)                            452 

AN ARTIFICIAL NEURAL NETWORK MODEL FOR 
PREDICTING THE BEHAVIOUR OF 

SEMI-RIGID JOINTS IN FIRE 
 

K.S. Al-Jabri 1,*, S.M. Al-Alawi 2, A.H. Al-Saidy 1 and A.S. Alnuaimi 1 
 

1 Department of Civil and Architectural Engineering, College of Engineering, Sultan Qaboos University, Oman 
2 Department of Electrical and Computer Engineering, College of Engineering, Sultan Qaboos University, Oman 

*(Corresponding author: E-mail: aljabri@squ.edu.om) 
 

Received: 9 April 2008; Revised: 14 July 2008; Accepted: 29 July 2008 

 
ABSTRACT: This paper presents an artificial neural networking (ANN) model developed to predict the behaviour 
of semi-rigid bare-steel joints at elevated temperature.  Data for three flush end-plate and one flexible end-plate 
joints were considered.  Sixteen parameters which included geometry of the joint’s components, material properties 
of the joint, joint’s temperature and the applied moment were used as the input variables for the model whilst the 
joint’s rotation was the main output parameter.  Data from experimental fire tests were used for training and testing 
the model.  In total, fifteen different test results were evaluated with 331 and 61 cases were used for training and 
testing the developed model, respectively.  The model predicted values were compared with actual test results.  
The results obtained indicated that the model can predict the moment-rotation behaviour in fire with very high 
accuracy.  The coefficients of determination (R2) for training and validation of the model were 0.964 and 0.956, 
respectively. 
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1. INTRODUCTION 
 
Steel loses both its strength and stiffness when subjected to fire.  Fire tests on steel structures have 
shown that the temperature within the joints is lower compared to connecting steel members.  This 
is attributed to the additional material around joints (column, end-plate, concrete slab, etc.) which 
significantly reduces the temperatures within the connections compared to those at the centre of 
supported beams.  The experimental results on the behaviour of steel connections under fire 
conditions are relatively recent and limited, partly because of the high cost of the fire tests and the 
limitations on the size of furnaces used.  Only limited joint tests have been performed and they 
were concentrated on obtaining the moment-rotation relationships of isolated joints (Al-Jabri et al. 
[1]).  Therefore, experimental fire joint tests are not anticipated to be performed on many 
connection types with various end conditions.  It is well known that even nominally ‘simple’ 
connections can resist significant moments at large rotation.  At the severe deformation of 
structural members in fire, moments are transferred through the joints to the adjacent members, and 
hence, they may have a beneficial effect on the survival time of members. 
 
Accurate prediction of the structural behaviour of steel beam-to-column connections, by estimating 
the local deformations and induced stresses, is necessary to assess the capacity of the connections 
and prevent their failure.  Numerical modeling presents, in principle, an alternative way to predict 
the response of structural steel joints in fire.  Artificial neural network (ANN) modeling is an 
artificial intelligence-based technique that emulates the human ability to learn from the past 
experience and derive quick solutions to new problems.  The developed ANN-based prediction 
model can be used by structural engineers to predict the elevated temperature behaviour of similar 
structural members. 
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Few ANN models have been developed to predict the connection behaviour at ambient temperature.  
Stavroulakis and Abdalla [2] and Stavroulakis et al. [3] described a neural network approach for 
identification and classification of semi-rigid connections in steel structures.  The 
moment-rotation law of the connection was obtained from experimental results by the use of a 
neural network based on the perceptron model.  Then the elastic plastic analysis problem was 
formulated for the given moment-rotation law as a quadratic programming problem and solved by a 
neural network based on the Hopfield model.  The bi-linear moment-rotation characteristics for 
minor axis steel connections were predicted by Anderson et al. [4] using ANN.  The results from 
the model were compared with experimental tests in which significant parameters have been varied.  
The results were found to provide approximations to the experimental response that are satisfactory 
for use in structural engineering design.  Recently, a neural network model was proposed by 
Demirtas et al. [5] to obtain nonlinear moment-rotation curves for semi-rigid connections.  The 
resulting model was then integrated into a non-linear frame analysis program to obtain nodal 
displacements and corresponding frame element forces.  Results from the analysis were compared 
with experimental results for a two-storey one-bay frame with semi-rigid connections.  
Al-Khaleefi et al. [6] reported the possibility of predicting the behaviour of structural members in 
fire after investigating the fire resistance of concrete filled tubular steel columns using neural 
networks.  The fire resistance of thirty-five hollow steel columns filled with plain concrete was 
predicted.  Results were in good agreement with results obtained from experimental column tests. 
 
This paper presents a new artificial network model developed to predict the behaviour of semi-rigid 
bare-stee1 unstiffened joints under fire conditions.  The developed ANN can be used for similar 
connections under fire by observing various factors influencing the connection's behaviour such as: 
(a) geometrical factors (i.e., member sizes), (b) material factors (i.e., strength and stiffness), and (c) 
loading conditions (i.e., static and fire).  The researcher is required to provide the magnitude of 
these influencing factors as inputs to the neural network and the network will predict the behaviour 
of the joint based on the combined effects of these factors.  This model can be used to predict the 
rotational capacity of the connection and the contribution of individual components of the 
connection as well as the contribution of the loading to the overall connection's behaviour without 
conducting costly fire tests. 
 
 
2. ARTIFICIAL NEURAL NETWORKS (ANNs) 
 
ANNs are computer programs that are trained in order to recognize both linear and nonlinear 
relationships among the input and the output variables in a given data set.  In general, ANN 
applications in engineering have received wide acceptance.  The popularity and acceptance of this 
technique stems from ANN features that are particularly attractive for data analysis.  These 
features include handling of fragmented and noisy data; speed inherent to parallel distributed 
architectures, generalization capability over new data, ability to effectively incorporate a large 
number of input parameters, and its capability of modeling nonlinear systems. 
 
One of the most common and frequently used ANN paradigm is the Back-propagation paradigm. 
This supervised learning method was developed by Rumelhart [7] based on the generalization of 
the least mean square error (LMS) algorithm.  The Back-propagation algorithm uses gradient 
descent search technique to minimize a cost function equal to the mean square difference between 
the desired and the actual net output.  The network is trained by selecting small random weights 
and internal threshold and then presenting all training data repeatedly by using supervised training 
technique. The weights are changed till the network reach the desired error level or the cost 
function is reduced to an acceptable value.     
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The major building block for any ANN architecture is the processing element or neuron.  These 
neurons are located in one of three types of layers: the input layer (weights), the hidden (bias) layer, 
or the output (an activation function) layer.  The input neurons receive data from the outside 
environment, the hidden neurons receive signals from all of the neurons in the preceding layer, and 
the output neurons send information back to the external environment.  The neurons in the input 
layer receive the input signals representing the input parameters which describe the system 
modelled such as geometrical and material properties of the joint, loading, temperature, etc.  The 
output layer, on the other hand, consists of output neuron representing the predicted results obtained 
from the ANN modelling such as joint’s rotation, internal forces of the joint’s components, etc. 
Between the input and output layers, generally, there is one or more hidden layer.  These neurons 
are connected together by a line of communication called connection.  Stanley [8] indicated that 
the way in which the neurons are connected to each other in a network typology has a great effect 
on the operation and performance of the network.  ANN models come in a variety of typologies or 
paradigms.  Simpson [9] provides a coherent description of 27 different popular ANN paradigms 
and presents comparative analyses, applications, and implementations of these paradigms.  
 
In the back propagation (BP) architecture, shown in Figure 1, each element or neuron receives 
input from the real-world environment or from other processing elements, processes this input, and 
produces a specific output.  Generally, many of these processing elements perform their operations 
at the same time.  This parallelism is a unique feature of the ANN that distinguishes it from the 
serial processing that is usually performed by conventional computer systems.  Each neuron has a 
straightforward assignment.  Input coming to the neuron is associated with a weight indicating its 
strength.  In the neuron, the values of the input are multiplied by the corresponding weights and 
all products are added to obtain a net value (neti).  After summation, the net input of the neurons is 
combined with the previous state of the neurons to produce a new activation value.  Whether the 
neurons fire or not will depend on the magnitude of this value.  For example, each neuron receives 
inputs x1, x2,……..xn, attached with a weight wi which shows the connection strength for that input 
for each connection.  Each neuron is then multiplied by the corresponding weight of the neuron 
connection.  A bias bi can be defined as a type of connection weight with a constant nonzero value 
added to the summation of inputs and corresponding weights u as expressed in Eq. 1. 
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Figure 1. Typical Back-Propagation Architecture 
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The activation is then passed through an output or a transfer function (fui) that generates the actual 
neuron output.  The transfer function modifies the value of the output signal. f(ui) yielding a value 
called the unit’s “activation”, given in Eq. 2. 
 
Yi = f(ui) (2) 
 
This function can be either a simple threshold function that only produces output if the combined 
input is greater than the threshold value, or it can be a continuous function that changes the output 
based on the strength of the combined input.  Activation functions serve to introduce nonlinearity 
into neural networks, which makes ANNs so powerful (Guzelbey et al. [10-11]).  Typical transfer 
functions employed in building ANN applications include a linear threshold transfer function, step 
function, sigmoid function, and others.  In this work a sigmoid function was used to develop the 
ANN Model. 
 
Another important network design variable is the learning rate coefficient which represents the 
degree by which the weights are changed when two neuron are excited.  Each time a pattern is 
presented to the network, the weights leading to a neuron are modified slightly during learning in 
the direction required to produce a smaller error at the outputs the next time the same pattern is 
presented.  The amount of weight modification is proportional to the learning rate.  The value of 
the coefficient ranges between 0.0 to 1.0, where a value closer to 1 indicates significant 
modification in weight while a value closer to 0 indicates little modification (Al-Khaleefi et al. [6]). 
 
2.1 ANN Training and Testing 
 
The first and the most critical step in developing an effective ANN model is input and output 
definition and data preparation.  This includes identifying variables of interest, gathering the 
relevant data and inspecting them for possible errors, missing values, and outliers.  Data accuracy 
is vital for the development of an efficient model that can provide accurate prediction.  If incorrect 
or erroneous data are fed to the model, this will result in incorrect prediction.  As the saying goes, 
"garbage in, garbage out".  
 
Once the ANN model architecture is defined, data are collected and fed to the model.  The 
network is then trained to recognize the relationships between the input and output parameters.  
The BP algorithm uses the supervised training technique.  In this technique, the interlayer 
connection weights and the processing elements' thresholds are first initialized to small random 
values.  The network is then presented with a set of training patterns, each consisting of an 
example of the problem to be solved (the input) and the desired solution to this problem (the 
output).  These training patterns are presented repeatedly to the ANN model and the error between 
actual and predicted results is calculated.  Weights are then adjusted by small amounts that are 
dictated by the General Delta Rule (Rumelhart and McClelland [7]).  This adjustment is 
performed after each completed iteration whenever the network's Computed output is different 
from the desired output.  This process continues until weights converge to the desired error level 
or the output reaches an acceptable level. 
 
The ANN model can sometimes learn something different than the relationships in the data.  It 
also can memorize the data or part of this data without learning the relationships between variables 
or trends in the data.  Hence, to insure network accuracy and the generalization capability, the 
network must be tested on a continuous basis and should be monitored during the training and 
testing operations.  The testing operation is performed by passing a separate testing set to the 
trained ANN model and recording the results.  These results are compared to actual results.  The 
trained model is assumed to be successful if the model gives good results for that test set.  To 
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insure that ANN models provide correct prediction or classifications, the prediction results 
produced by ANN models can be validated against expert predictions for the same cases or it can 
be validated against the results of other computer programs or experimental tests. 
 
 
3. KNOWLEDGE REPRESENTATION 
 
The procedure adopted to model the rotational behaviour of semi-rigid joints in fire consists of the 
following steps: 
 
1. Identification of the major factors that influence the behaviour of semi-rigid joints in fire. 
2. Collection of a set of experimental cases with values for these identified factors along with 

the respective joint’s rotation. 
3. Coding of the laboratory test cases and corresponding value of rotation obtained based on 

experiments. 
4. Development of ANN model, from the coded cases, which is capable of predicting the 

rotation of other similar joints in fire. 
5. Compare results generated by the model with the corresponding experimental results and 

identifying the contribution of each input parameter on the overall behaviour of joint at high 
temperature. 

 
 
4. GEOMETRY OF THE JOINTS  
 
The cruciform bolted beam-to-column steel joints, tested experimentally by Leston-Jones [12] and 
Al-Jabri et al. [1], were considered.  Two of the joints (Fire1 and Fire2) have the same member 
sizes but different end-plate thicknesses whilst the third joint (Fire3) has larger member sizes.  The 
first two joints consist of two 254x102UB22 beams connected to a 152x152UC23 column using six 
M16 bolts and 8 mm (Figure 2) and 12 mm thick flush end-plates for Fires1 and 2, respectively.  
The third joint (Fire3) comprised a pair of 356 x 171UB51 beams connected to a 254 x 254UC89 
column by 10mm thick flush end-plates with eight M20 Grade 8.8 bolts (Figure 3).  The fourth 
joint (Fire4) is a flexible end-plate joint with beam and column sizes similar to Fire3 but the 
end-plates dimension is different as shown in Figure 4.  In total fifteen elevated temperature tests 
were modelled with 331 and 61 cases were used for training and testing the proposed model, 
respectively.  Table 1 shows the loading level for each test.  
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Figure 2. Flush End-Plate Joint Detail for Fire1 Tests (FR1) 
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Figure 3. Flush End-Plate Joint Detail for Fire3 Tests (FR3) 
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Figure 4. Flexible End-Plate Joint Detail for Fire4 Tests (FR3) 
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Figure 5. Elevated Temperature Testing Arrangement 
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Table 1. Level of Loading for Joint Tests 
 

Test 
Applied M 

(kNm): 
Average recorded M

(kNm): 
Comments: 

FR11 4 4.40 Group 1, Test 1 
FR12 8 8.20 Group 1, Test 2 
FR13 13 13.12 Group 1, Test 3 

Fire1 

FR14 17 17.10 Group 1, Test 4 
FR21 5 4.9 Group 2, Test 1 
FR22 10 9.3 Group 2, Test 2 
FR23 15 14.4 Group 2, Test 3 

Fire2 

FR24 20 19 Group 2, Test 4 
 FR25 25 23 Group 2, Test 4 

FR31 27 27.4 Group 3, Test 1 
FR32 56 54.8 Group 3, Test 2 
FR33 82 82.1 Group 3, Test 3 

Fire3 

FR34 110 110 Group 3, Test 4 
FR41 8 8.2 Group 4, Test 1 

Fire4 
FR42 16 16.5 Group 4, Test 2 

M = Moment applied at the joint 
 
The fire testing arrangement consisted of a symmetric cruciform arrangement of a single column 
2.7m high with two cantilever beams 1.9m long connected either side to the column flanges as 
shown in Figure 5.  All specimens were major axis joints, i.e., beams connected to the column 
flanges with mild steel end-plates.  Tests were performed in a gas-fired portable furnace lined with 
ceramic fibre specially designed for testing connections.  A linear temperature ramp (at a rate of 
about 10C per minute) achieving 900C in 90 minutes was adopted.  The instrumentation 
included clinometers for measuring rotations, displacement transducers, load cells and 
thermocouples.  The experimental elevated-temperature joint tests were conducted by keeping the 
specimen at a constant load level and increasing the furnace temperature until failure.  For all 
specimens, ambient-temperature material properties were measured using standard tensile coupon 
tests, and cross-sectional dimensions were recorded prior to testing in the furnace. 
 
 
5. DEVELOPMENT OF THE ANN MODEL 
 
The ANN model for semi-rigid joints was developed using the back-propagation paradigm.  As 
shown Figure 6, 16 different input parameters were used to model the joint’s 
moment-rotation-temperature response.  These included the joint’s temperature, the applied 
moment, material properties such as the yield strength of the joint’s components and the geometry 
of the beams, the column, the end-plates and the bolts.   
 
Having identified the factors that influence the rotational capacity of the joint at elevated 
temperature, it is necessary to establish the training samples to develop the neural network model.  
The experimental data were transformed into a numerical scale and coded to generate a set of 
training and testing data.  If the rotational behaviour for a certain joint and the factors affecting 
this behaviour in fire are known, then it is possible to develop an empirical model for this 
prediction process.   
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Figure 6. The Architecture of the Developed ANN Models 
 
In the development of this generalized model, a training set consisting of 331 cases was utilized 
that were obtained from the experimental data and a testing and validation set of 61 cases that were 
selected randomly from the experimental data.  Each training and testing data set contains 
variations of the 16 variables representing the different situations that could possibly take place as 
input and its corresponding output.  Typical training patterns used as part of the training data set 
are shown in Table 1.  The ANN model used in each case consists of 16 input nodes representing 
the input variables, while the output node is one representing the rotation as shown in Figure 6. 
 
To produce a successful model, it is necessary to have a sufficient number of training cases in order 
to enable the ANN model to fit a continuous function to the training data.  Further more, the 
number of training points that are needed to develop an accurate continuous model depends on 
other factors such as the complexity of the solution model being modelled, stochastic content of the 
data in which adequate training cases are required to prevent bias due to random fluctuations and 
the number of input variables (Al-Khaleefi et al. [6], Garson [13]).   
 
A small learning rate of 0.4 was adopted for the current investigation since larger learning rates 
have been found in some cases to lead to oscillations in weight changes resulting in never ending 
learning process.  In order to achieve an effective learning without oscillation, it is useful to make 
the weight change as a function of the previous weight change.  This weight change is represented 
by the momentum coefficient.  The modelling process was performed satisfactorily with a 
momentum coefficient value of 0.6. 
 
The factors that provide the power of the internal representation in capturing the non-linear 
relationship between the input and output parameters are the number of hidden layer(s) and the 
number of hidden neurons in the hidden layers.  Determining the number of hidden layers to use 
and the appropriate number of neurons to include in each hidden layer is not an exact science.  
Research in this area (Garson [13], Goh [14], Hecht-Nielsen [15]) proved that one or two hidden 
layers with an adequate number of neurons are sufficient to model any solution surface of practical 
interest.  Therefore, a larger number of hidden layers and hidden neurons provides a good mean 
for developing a more effective network.  However, the addition of more hidden neurons increases 
the number of undetermined parameters (weights and biases) associated with the network. A large 
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Beam depth (mm) 
Beam width (mm) 
Beam flange thickness (mm) 
Beam web thickness (mm) 
Column depth (mm) 
Column width (mm) 
Column flange thickness (mm) 
Column web thickness (mm) 
No. of Bolts  
Bolt diameter (mm) 

End-plate thickness (mm) 

End-plate depth (mm) 
End-plate width (mm) 

Input parameters 

Output parameter 



                      An Artificial Neural Network Model for Predicting the Behaviour of Semi-Rigid Joints in Fire              460 

number of training examples is then needed to solve these parameters and get a good 
approximation of the problem domain. When too few training examples are provided, the network 
will try to memorize, resulting in poor generalization (Al-Khaleefi et al. [6]).  In order to provide a 
good approximation over the problem domain, it should be insured that the number of training pairs 
should be more than the number of undetermined parameters which are the weights and biases 
associated with the ANN approximations (Carpenter and Hoffman [16]).  In this study, one hidden 
layer with 8 hidden neurons was found adequate to give satisfactory results. 
 
 
6.  RESULTS AND DISCUSSION 
 
The experimental results from the fifteen different tests conducted on the four bare-steel joints were 
divided into a training set (331 cases) and a testing set (61 cases) which gives a total number of 392 
cases that considered when developing the ANN model.  The testing set (which constitutes about 
15% of the data) was extracted randomly from the collected data to ensure that the developed ANN 
model has the capability of predicting rotational behaviour of the joints to a good degree of 
accuracy.  The training process was performed using the NeuroShell® simulator [17].  Sixteen 
input neurons and one output neuron with eight hidden neurons constitute the neural network 
arrangement for the problem.  After several adjustments to the different network parameters and 
after completing 12417 iterations, the network converged to a threshold of 0.0001 in less than 5 
min. with a learning rate of 0.4, a momentum value of 0.6.   
 
Table 2 a provides a comparison between the experimental results and the ANN generated output 
for some cases in the training set whereas Table 2b shows a comparison between the experimental 
results and the ANN predicted output for selected cases in the testing set.  It can be seen from 
Table 2 that the developed model could capture the decision process very closely.  The same trend 
was observed in the data which is not presented in Table 2. 
 
The trained model predictions were in good agreement with the actual experimental results as 
demonstrated by Figure 7, hence, producing R2 value of 0.9639. These results indicate that 
approximately more than 96% of the variation in the rotation values predicted could be explained 
by the 16 selected input variables and the experimental data used for model development. 
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Figure 7. Comparison between Predicted and Experimental Results for the Training Set Data 
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Figure 8. Comparison between Predicted and Experimental Results for the Testing Set Data 

 
Having trained the network successfully, the next step is to test the network in order to judge its 
performance and to determine whether the predicted results confirm with the actual results. The 
ANN model can sometimes learn something different than the relationships in the data.  It also can 
memorize the data or part of this data without learning the relationships between variables or trends 
in the data.  Hence, to insure network accuracy and the generalization capability, the network must 
be tested on a continuous basis and should be monitored during the training and testing operations.  
The testing operation is performed by passing a separate testing set to the trained ANN model and 
recording the results.  These results are compared to actual or experimental results.  The trained 
model is assumed to be successful if the model gives good results for that test set or validation set.  
Using the testing and validation set of 61 cases that were extracted randomly from the experimental 
data for the model; the testing operations were then performed on the model separately. The results 
were compared with the actual experimental results.  The statistical analysis of these results 
indicates that the R2 value for the testing set was 0.9562 as shown in Figure 8. This high 
generalization capability indicates that the ANN model developed in this work can be used to 
model and predict the relationship accurately based on the given input variables.  However it 
should be noted from Figures. 7 and 8 that at very low rotations the developed ANN predicting 
higher rotations that the experimental ones while at very large rotational levels lower values of 
rotation was predicted compared to experimental results.  This variation was observed in both 
training and testing sets respectively.  This discrepancy between the experimental and predicted 
rotations will not affect the reliability of the model since practically the actual behaviour of the 
joint can rarely undergo very large levels of rotation beyond the levels closely predicted by the 
model even at very high temperatures.   
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Table 2. Comparison between Predicted Results from the Neural Network Model  
Generated vs. Experimental Rotations on Some Training and Testing Cases 

 

 
 

Table 3. Percent Contribution of the Input Variables to the Rotation in the Three Models 
 

Joint’s Component Input parameter % Contribution RANK 
Moment (kNm)  33.04 1   
Temperature (°C) 28.65 2 
Depth  1.47 16 
Width  1.73 14 
Flange thickness  1.73 13 

 
Beam  
 

Web thickness 1.80 10 
Depth  1.82 8 
Width  2.02 6 
Flange thickness  1.80 11 

 
Column  
 

Web thickness  1.87 9 
No. of Bolts  1.55 15  

Bolts Bolt diameter  1.92 7 
Thickness  3.58 5 
Depth  5.92 4 

 
End-plate  
 Width  9.35 3 
 Steel yield strength  1.75 12 

    TOTAL        100 
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To find the percent contribution of each of the input variables with respect to the output variables, 
the partitioning method of the connection weights of the network (Garson [13], Goh [14]) was used. 
It was found that the highest contribution is due to the moment (33.04%), temperature (28.65%), 
and end-plate width (9.35%), depth (5.92%), and thickness (3.58%).  These results, as shown in 
Table 3, clearly indicate that the temperature, the moment and the geometries of the end-plate are 
important factors in determining the effect elevated temperature on the degree of rotation. 
 
 
7. CONCLUSIONS 
 
This paper presented an artificial neural network (ANN) model developed to predict the rotational 
behaviour of semi-rigid joints in fire.  Data from three flush end-plate and flexible end-plate 
bare-steel joints were modelled and results from fifteen different tests were evaluated.  Data from 
these tests were used for training and testing the neural network model.  The results obtained from 
the model compared very closely with the experimental results with R2 value of 0.964 and 0.956 for 
training and testing sets, respectively demonstrating the capability of the ANN simulation 
techniques in predicting the behaviour of semi-rigid joints in fire with high accuracy.  Results also 
showed that the applied moment, temperature and end-plate geometry have considerable effect on 
the rotation of joints in fire more than the other input parameters studied.  The described model 
can be modified to study other important parameters that can have considerable effect on the 
behaviour of joints at elevated temperatures.   
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