Reference Type: Journal Article Record Number: 1 Author: Fawzia, S. and Shahanara, K. Year: 2014 Title: Finite element analysis of cfrp strengthened steel hollow sections under tension Journal: Advanced Steel Construction Volume: 10 Issue: 4 Pages: 13 Start Page: 463 Short Title: Finite element analysis of cfrp strengthened steel hollow sections under tension DOI: 10.18057/IJASC.2014.10.4.6 Keywords: Carbon fibre reinforced polymer (CFRP), Polymer, Finite element analysis (FEA), Analytical model, Joints and adhesive  Abstract: This paper presents a nonlinear finite element (FE) model for the analysis of very high strength (VHS) steel hollow sections wrapped by high modulus carbon fibre rein forced polymer (CFRP) sheets. The bond strength of CFRP wrapped VHS circular steel hollow section under tension is investigated using the FE model. The three dimensional FE model by Nonlinear static analysis has been carried out by Strand 7 finite element software. The model is validated by the experimental data obtained from Fawzia et al [1]. A detail parametric study has been performed to examine the effect of number of CFRP layers, different diameters of VHS steel tube and different bond lengths of CFRP sheet. The analytical model developed by Fawzia et al. [1] has been used to determine the load carrying capacity of different diameters of CFRP strengthened VHS steel tube by using the capacity from each layer of CFRP sheet. The results from FE model have found in reasonable agreement with the analytical model developed by Fawzia et al [1]. This validation was necessary because the analytical model by Fawzia et al [1] was developed by using only one diameter of VHS steel tube and fixed (five) number of CFRP layers. It can be concluded that the developed analytical model is valid for CFRP strengthened VHS steel tubes with diameter range of 38mm to 100mm and CFRP layer range of 3 to 5 layers. Based on the results it can also be concluded that the effective bond length is consistent for different diameters of steel tubes and different layers of CFRP. Three layers of CFRP is considered most effective wrapping scheme due to the cost effectiveness. Finally the distribution of longitudinal and hoop stress has been determined by the finite element model for different diameters of CFRP strengthened VHS steel tube. Author Address: Science and Engineering Faculty, School of Civil Engineering and Built Environment, Queensland University of Technology, Brisbane 4000, Queensland, Australia