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ABSTRACT: A new 3-node co-rotational element formulation for 3D beam is presented. The present formulation 
differs from existing co-rotational formulations as follows: 1) vectorial rotational variables are used to replace 
traditional angular rotational variables, thus all nodal variables are additive in incremental solution procedure; 2) the 
Hellinger-Reissner functional is introduced to eliminate membrane and shear locking phenomena, with assumed 
membrane strains and shear strains employed to replace part of conforming strains; 3) all nodal variables are 
commutative in differentiating Hellinger-Reissner functional with respect to these variables, resulting in a symmetric 
element tangent stiffness matrix; 4) the total values of nodal variables are used to update the element tangent stiffness 
matrix, making it advantageous in solving dynamic problems. Several examples of elastic beams with large 
displacements and large rotations are analysed to verify the computational efficiency and reliability of the present 
beam element formulation. 

Keywords: Co-rotational method; vectorial rotational variable; 3D beam element; locking-free; Hellinger-Reissner 
functional; assumed strain. 

 
 
1.  INTRODUCTION 
 
Developing an efficient beam element formulation for large displacement analysis of framed 
structures has been an issue for many researchers. There already exist various formulations to 
address this issue. These formulations had been separated into three categories: Total Lagrangian 
formulation, updated Lagrangian formulation, and co-rotational formulation. The main ideas of the 
co-rotational approach (Rankin and Brogan [1], Crisfield [2], Yang et. al.[3]) can be summarized as 
follows: 1) define an element reference frame that translates and rotates with the element’s overall 
rigid-body motion, but does not deform with the element; 2) calculate the nodal variables with 
respect to this reference frame; the element’s overall rigid-body motion is thus excluded in 
computing the local internal force vector and the element tangent stiffness matrix, resulting an 
element-independent formulation; 3) the geometric nonlinearity induced by the large element 
rigid-body motion is incorporated in the transformation matrix relating the local and global internal 
force vector and tangent stiffness matrix.  
 
Many co-rotational beam and shell element formulations have been proposed. The pioneer work 
can be traced to Wempner [4], Belytschko et al.[5,6], Argyris et al.[7] and Oran [8,9]. Surveys of 
the existing co-rotational finite element formulations were presented respectively by Stolarski et 
al.[10], Crisfield and Moita [11], Yang et al.[3], and Felippa and Haugen [12]. Recently, Urthaler 
and Reddy [13] developed three locking-free co-rotational planar beam element formulations by 
adopting respectively the Euler–Bernoulli, Timoshenko, and simplified Reddy theories in 
modelling of the element kinematic behaviour. Galvaneito and Crisfield [14] proposed an 
energy-conserving procedure for the implicit non-linear dynamic analysis of planar beam structures 
by using a form of co-rotational technique. Iura et al.[15] investigated the accuracy of the 
co-rotational formulation for 3-D Timoshenko beam undergoing finite strains and finite rotations. 
Pajot and Maute [16] studied the sensitivities of a co-rotational element formulation to element 
shape and material parameters, and the effect of the unsymmetric terms in a consistent tangent 
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stiffness on element computational accuracy; see also Simo and Vu-Quoc [17] on the effect of 
tangent stiffness symmetrization on rate of convergence. 
 
Due to the non-commutativity of spatial finite rotations, nodal rotations are always updated by 
using a complicated transformation matrix [18,19] in an incremental solution procedure; such 
non-commutativity renders both the local and global element tangent stiffness matrices asymmetric 
in most existing co-rotational formulations. Thus more computer storage is needed to store all 
necessary coefficients, while the computational efficiency decreases. Simo and Vu-Quoc [17] 
proved that in a conservative system, although their tangent stiffness matrix is asymmetric away 
from equilibrium, this matrix becomes symmetric at equilibrium. Crisfield and his co-workers [2,20] 
also encountered this phenomenon, and artificially symmetrized the element tangent stiffness 
matrix by excluding the non-symmetric term. This treatment can greatly improve the computational 
efficiency. Crisfield [2] and Simo [21] also predicted that a symmetric tangent stiffness matrix 
could be achieved if a certain set of additive rotational variables were employed in a co-rotational 
element formulation. In the present co-rotational beam element formulation, such additive 
rotational variables are used, and the versatile vectorial rotational variables had also been employed 
in a co-rotational 2D beam element formulation [22], a co-rotational 3D beam conforming element 
formulation [23], a co-rotational curved triangular shell element formulation [24], and a 
co-rotational curved quadrilateral shell element formulation [25], respectively.  
 
 
2. DESCRIPTION OF THE CO-ROTATIONAL FRAMEWORK 
 
In the present beam element formulation, several basic assumptions were adopted: 1) the element is 
straight at the initial configuration; 2) the shape of the cross-section does not distort with element 
deforming; 3) the element cross-section is bisymmetric; 4) restrained warping effect is ignored.  
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Figure 1. Definition of Local and Global Coordinate Systems 

 
The local and global coordinate systems of the beam element are illustrated in Figure 1, where 
three local coordinate axes run along two principal axes of the cross-section at the internal node and 
their cross-product, and translate and rotate with the element rigid-body translations and rotations, 
but do not deform with the element.  
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An auxiliary point in one of the symmetry plane of the beam element is employed in defining the 
local coordinate axes (see Point A in Figure 1). ex0, ey0, ez0 are the normalized orientation vectors of 
x-axis, y-axis and z-axis, respectively. They are calculated from 
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and Xi0 (i=1,2,3,A) is the global coordinates of Node i.  
 
The orientation vectors eix, eiy, eiz of Node i at the deformed configuration are calculated from the 
rotational variables directly in an incremental solution procedure. In particular, at Node 3 (the 
internal node of the beam element), e3x, e3y, e3z are coincident with the orientation of local 
coordinate axes,  
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and at the initial configuration, 
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however, the initial orientation vectors of two end nodes are defined as 
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In the global coordinate system, each element employs 18 degrees of freedom,  
 

333111 ,3,3,3333,1,1,1111
T
G nzmynynzmyny eeeWVUeeeWVU u     (6) 

 

where, iiii WVUTd is the vector of global translational displacements at Node i; 



770                       A Mixed Co-Rotational 3D Beam Element Formulation for Arbitrarily Large Rotations 

iii nizmiyniygi eee ,,,
T n (ni,mi =X,Y or Z ) is the vector of vectorial rotational variables at Node i, it consists 

of three independent components of eiy and eiz in the global coordinate system.  
 
In the local coordinate system, each element has 12 degrees of freedom, and each end node 6 freedoms,  
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T
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where, iiii wvuTt  are the vector of local translational displacements at Node i, 

and
iii nizmiyniyi rrr ,,,

T θ (ni,mi =x,y or z ) are the vector of vectorial rotational variables at Node i, 

it consists of three independent components of iye and ize in the local coordinate system. 

 
The rotational variables 

iniye , ,
imiye , and 

inize , are defined according to the following procedure.  
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preceding incremental loading step: 

Case 1: if
ii mizliz ee ,,   and 

ii nizliz ee ,,  , then three rotational variables at the next incremental 

loading step are 
iii nizmiyniygi eee ,,,

T n , where  iii lmn ,  is a circular permutation of {X,Y,Z}, 

other components of iye and ize can be calculated from them,   
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where, 1s , 3s  take a numeric value of 1 or –1, they have the same signs as 

iliye ,  or 
ilize , at last 

incremental step; 2s  is also such a constant, and it is conditioned on 0T iziyee .  

 
Case 2: if

ii lizmiz ee ,,  and
ii nizmiz ee ,,  at the end of the current incremental step, then three 

rotational variables are defined as
iii nizmiyniygi eee ,,,

T n , and other components of iye and ize can 

be calculated as,   
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where, 321 ,, sss  are the same kind of constants as those in Case 1. 

 
Vector eix is the cross-product of Vectors eiy and eiz, 
 

iziyix eee                                           (10) 
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Figure 2. Illumination of the Co-rotational Framework 

 

The definition of local vectorial rotational variables
iii nizmiyniyi rrr ,,,

T θ follows the same route 

as that of
iii nizmiyniygi eee ,,,

T n . 

 
Rigid-body motion contributes nothing to element strains, so it can be excluded in advance to 
achieve an element-independent formulation. This procedure is illuminated in Figure 2, where (1) 
represents an element at its initial configuration, (3) is at the deformed configuration, from (1) to (3) 
the element experiences both rigid-body motion and pure deformation. (2) is an intermediate 
configuration between (1) and (3), from (1) to (2), the element has only rigid-body motion, while, 
from (2) to (3), the element experiences pure deformation. In the present co-rotational formulation, 
the rigid-body motion from (1) to (2) is excluded, and only pure element deformation from (2) to (3) 
is considered in calculating the local internal force vector and element tangent stiffness matrix. 
Thus, the relationships between local and global nodal variables are given as, 
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where,  
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Especially, at the internal node,  
 













100

010

000

T
3

T
3

T
3

z

y

r

r

t

                   (13) 

 
vi0 is the relative vector oriented from Node 3 to Node i,  
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3. KINEMATICS OF A 3-NODE ISO-PARAMETRIC BEAM ELEMENT 
 
In the present 3-node iso-parametric beam element, the local coordinates, displacements and 
vectorial rotations at any point of the element central line are interpolated by using Lagrangian 
shape functions. The initial and current local coordinates at any point of the element can be 
depicted as 

 

     



3

1
0

3

1
0

3

1
0

0

i
izil

i
iyil

i
ii NzNyN rrxg              (15a) 

 

      



3

1

3

1

3

1
0

i
izil

i
iyil

i
iii NzNyN rrxtg              (15b) 

 
where,  iN is the Lagrangian shape function at Node i ;   is the natural coordinate of a point 

in the element along its central line; xi0 is the initial local coordinates of Node i ; ly and lz  are 

the relative coordinates of any point in the element to its central line. 
 
Considering the possibility of large displacements and large rotations, Green strain measure is 
introduced to describe the strain-displacement relationship. For a beam element, the 
strain-displacement relationship is given as 
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where,  
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For convenience, Eq. 16 can be rewritten as 
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in Eqs. 19a~f,  
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in Eq. 20f, ,iN represents the first derivative of  iN with respect to  . 
 
 

4. ELEMENT FORMULATION 
 

To eliminate membrane and shear locking phenomena in beam elements, Hellinger–Reissner mixed 

functional are employed, where part of conforming strains are replaced by assumed strains, 
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where, E and G are the Young’s modulus and the shear modulus, respectively; k0 is the shear factor 
of the cross-section; V is the element volume; We is the work done by external forces; and 
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212121 ,,,,,   are independent variables employed in defining assumed strains. 
 

By enforcing the variation of the Hellinger–Reissner functional HRπ with respect to Lu ,α ,β and χ , 
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where,  
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considering the independence of α , β , χ and Lu , extff   at the equilibrium state, and assumed 

that the cross-section of the beam element is bisymmetric, meanwhile, let 
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and the local internal force vector f of the element can be calculated by 
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where, A is the cross-sectional area of the element, 
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The element tangent stiffness matrix in the local coordinate system can be calculated from 
differentiating the local internal force vector of the element with respect to Lu , 
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where, Tk is the sum of symmetric matrices, and some general matrices plus their transposes, thus 

Tk  is symmetric. 
 
Gaussian integral procedure is adopted to calculate the internal force vector and tangent stiffness 
matrix, 
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where, n0 is the number of Gaussian integral points along the central axis ξ of element, n0=3 in 
solving the examples below; i and )(T iw  are the natural coordinate and weight factor at 

Gaussian point i , respectively; J is the Jacobian, 
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The global internal force vector Gf  can be calculated from the local internal force vector f , 
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where, T is the transformation matrix from the global coordinate system to the local coordinate 
system, it is calculated from 
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The global tangent stiffness matrix is derived from Gf  as below, 
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It is obvious that the first term in the right side of Eq. 37 is symmetric. The second term includes 
the second derivatives of local nodal variables with respect to global nodal variables, where the 
global nodal variables are commutative, thus the second term is also symmetric, resulting in a 
symmetric element tangent stiffness matrix kTG in the global coordinate system. 
 
 
5. CALCULATION OF EQUIVALENT EXTERNAL FORCE VECTOR 
 
In the present element formulation, vectorial rotational variables are employed to replace traditional 
angular rotational variables, thus the components of the internal force vector with respect to 
vectorial rotational variables are not moment and torque, and an equivalent external force vector 
must be adopted. 
 
Firstly, assumed that Vector ne is rotated through infinitesimal rotations of ZYX Tθ  

to become Vector 1ne , then an approximate relationship of ne  and 1ne can be given as  
 

   nn eθSIe 1                                           (38) 
 
where, I  is a 3×3 unit matrix, and 
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Eq. 38 can be rewritten as 
 

    θeSeθSee  nnnn 1                                    (40) 
 
or 
 

  θeSe  nn                                                 (41) 
 
thus the relationship between the principal vectors of the cross-section of the element at Node i and 
the nodal angular rotations can be written as 
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furthermore, the relationship between the incremental vectorial rotational variables and the nodal 
angular rotational variables can be given as 
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where, )(, iykjS e  and )(, izkjS e  are respectively the components of )( iyeS  and )( izeS  at jth row 

and kth column.  
 
In calculating the equivalent components of the external force vector with respect to vectorial 
rotational variables, the work done by the equivalent components must be equal to that done by the 
corresponding moment and torque at Node i , 
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where, eqjM (j=1,2,3) is the equivalent component of the external force vector with respect to 

vectorial rotational variable, and iM  ( ZYX ,, ) is moment or torque loaded at Node i. 

Substitute Eq. 43 into Eq. 44, the equivalent components of the external force vector with respect to 
vectorial rotational variables can be calculated as 
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6. EXAMPLES 
 
6.1 Locking Problem  
 
6.1.1 Membrane locking problem  
 
An initially straight cantilever beam is subjected to an end bending moment (Figure 3). Its width 
and thickness are b and h, respectively, the cross-sectional shear factor is 5/6, and its length is 
L=100; The material properties of the beam are E=2.1×107 and μ=0.3, respectively. 

M
X

Y

o

L=100

b

h

 
Figure 3. A Cantilever Beam subject to an End Bending Moment 

 
Firstly, assumed that b=0.5 and h=0.1. The cantilever beam is divided into 7 elements equally. The 
deformed shapes of the cantilever at different end moment levels are depicted in Figure 4. It is 
shown that the beam experiences large displacement and large rotation, and its end rotation arrives 

at 2π under 
L

IEπ2
M  , the proposed beam element formulation demonstrates satisfying 

efficiency and reliability. Urthaler & Reddy [13] and Lee [26] had also solved a similar problem, 
but they did not present the geometry and material properties of the cantilever beam. 
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Figure 4. Deformed Shapes of the Cantilever Beam under Different End Moment Levels 

 
To illuminate the computational efficiency and accuracy of the present beam element using 
assumed membrane strains and shear strains (for convenience, it is abbreviated as AM+AS 
element), 4 cantilever beams with the same width (b=0.5) and different thickness values (h=0.2, 0.1, 
0.05, 0.01) are solved respectively. For comparison, the theoretic solutions and the results from 
beam elements using conforming membrane strains and shear strains (CM+CS), conforming 
membrane strains and assumed shear strains (CM+AS), assumed membrane strains and conforming 
shear strains (AM+CS) are also given in Table 1. It is shown that numerical locking will become 
more serious in the CM+CS and CM+AS elements with the cantilever beam thickness decrease, 
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and employing assumed shear strains or not has little effect on the computational efficiency and 
accuracy of these elements, however, adopting assumed membrane strains can eliminate numerical 
locking in the AM+CS and AM+AS elements effectively even if the cantilever beam thickness 
decreases greatly.  
 

Table 1. End Moment Bending a Cantilever Beam into an Exact Complete Circle 
Thickness h 0.2 0.1 0.05 0.01 
CM+CS-40e 495.820 (12.73%) 82.988 (50.95%) 20.878 (203.81%) 2.856 (--) 
CM+AS-40e 495.820 (12.73%) 82.982 (50.94) 20.878 (203.81%) 2.856 (--) 
AM+CS-7e 445.913 (1.38%) 55.735 (1.38) 6.961(1.30%) 5.574×10-2 (1.38%) 
AM+AS-7e 445.909 (1.38%) 55.731 (1.37%) 6.968 (1.40%) 5.574×10-2 (1.38%) 
Exact values 439.823 54.978 6.872 5.498×10-2 

Note: “-40e” and “-7e” denote the element meshes employed; Values in the parentheses are the relative errors 
between the simulation results and the theoretical solutions. 
 
6.1.2 Shear locking problem 
 
A beam is clamped at both ends and loaded with a concentrated load at the central point (Figure 5a). 
It has a length of 2L=20, width b=0.5 and thickness h, and its material properties are E=2.1×107 
and μ=0.3, respectively. Considering the symmetry of its geometry and loading case, only one 
half of the beam is studied (Figure 5b).  
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Figure 5. A Clamped Beam subject to a Concentrated Load at Central Point 

 
Table 2. Deflection at the Loading Point of an End-Clamped Beam 

Thickness h 0.5 0.2 0.05 0.01 
Load 328.126 21.000 3.281×10-1 2.625×10-3 

CM+CS -2e
-5e

-10e

0.1812 
0.2173 
0.2204 

0.1407 
0.1639 
0.1667 

0.0740 
0.0829 
0.0842 

0.0283 
0.0316 
0.0323 

CM+AS-2e
-5e

-10e

0.2208 
0.2208 
0.2208 

0.1673 
0.1673 
0.1673 

0.0846 
0.0846 
0.0847 

0.0326 
0.0325 
0.0325 

AM+CS-2e
-5e

-10e

0.1817 
0.2173 
0.2205 

0.1418 
0.1639 
0.1667 

0.0750 
0.0829 
0.0842 

0.0288 
0.0316 
0.0323 

AM+AS-2e
-10e

0.2212 
0.2208 

0.1678 
0.1673 

0.0849 
0.0847 

0.0326 
0.0325 
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Different beam thickness values (h=0.5,0.2,0.05 and 0.01) are considered. For comparison, the 
deflections at the loading point calculated by using AS+AM, CS+CM, AS+CM and CS+AM 
elements using different element meshes are presented in Table 2. It demonstrates that the 
convergence of the CM+CS and AM+CS elements become deteriorated with the beam thickness 
decrease, even assumed membrane strains are introduced in AM+CS element, thus fine element 
mesh must be employed to get accurate solutions; while the thickness variation has little effect on 
the computational accuracy and convergence of the AM+AS and CM+AS elements, satisfying 
solutions can be achieved by using very coarse element meshes of them. 
 
6.1.3 Membrane and shear locking problems 
 
A cantilever beam is subjected to a concentrated load at the free end (Figure 6). It has a length L=5, 
width b=0.5 and thickness h; its material properties are E=2.1×107 and μ=0.3, respectively. 
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F

 
Figure 6. A Cantilever Beam subject to a Concentrated Load at Free End 

 
Different thickness values of the cantilever beam are considered, and the results calculated by using 
CM+CS, CM+AS, AM+CS and AM+AS elements are presented in Table 3. It is shown that 
numerical locking occurs in CM+CS, CM+AS and AM+CS elements, it becomes more serious with 
beam thickness decrease, and this tendency is even more obvious in CM+CS, CM+AS elements, 
while the AM+AS element is free of locking. 

 
Table. 3 Deflection at the Free End of a Cantilever Beam 

Thickness h 0.5 0.2 0.05 0.01 
Load 656.250 42.000 6.563×10-1 5.250×10-3 

CM+CS-1e 
-2e 

-10e 

0.1942 
0.2412 
0.2513 

0.1725 
0.2322 
0.2495 

0.1123 
0.2003 
0.2487 

0.0472 
0.1097 
0.2461 

CM+AS-1e 
-2e 

-10e 

 0.2480 
 0.2508 
0.2513 

 0.2332 
 0.2464 
 0.2497 

0.1746 
0.2158 
0.2493 

 0.1097 
 0.1253 
 0.2467 

AM+CS-1e 
-2e 

-10e 

0.1975 
0.2417 
0.2513 

0.1890 
0. 2355 
0.2495 

0.1872 
0.2339 
0.2488 

0.1872 
0.2338 
0.2487 

AM+AS-1e 
-10e 

0.2513 
0.2513 

0.2496 
0.2497 

0.2494 
0.2494 

0.2493 
0.2494 

 
Based on the three examples above, several conclusions can be drawn: 1) membrane locking exists 
in the first example, it becomes even more serious in a thin beam element, introducing assumed 
membrane strains in a Hellinger-Reissner functional can exclude membrane locking effectively; 2) 
shear locking occurs in the second example, and assumed shear strains in a Hellinger-Reissner 
functional can eliminate it successfully; 3) both membrane locking and shear locking are observed 
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in the third example, and employing assumed membrane strains and shear strains simultaneously 
can avoid them; 4) locking phenomena are closely related to element thickness, loading cases and 
boundary conditions, etc., and they may even occur in thick beam problems. 
 
1.1  A Cantilever 450- bend subject to End Loading 
 
A cantilever 450- bend lies in X-Y plane (see Figure 7), it has an average radius of 100in, and a 
square cross-section of 1×1 in2, its elastic modulus E and Poisson’s ratio μ are 107psi and 0.0, 
respectively. A concentrated load in Z-direction is applied at the free end. 
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Figure 7. A Cantilever 450-bend with a Concentrated Tip Load 

 
This bend is divided into 8 beam elements equally, and these elements are idealized as straight 
beams. The tip displacements under different load levels are given in Table 4. To verify the 
reliability and accuracy of the procedure, the results from Bathe & Bolourchi [27] and Simo & 
Vu-Quoc [17] are also presented in Table 4, it is shown that the results from present studies can fit 
in well with them. 
 

Table 4. Tip Displacements under Different Load Levels 
Tip displacement (in) 

Present study Bathe and Bolourchi [27] Simo and Vu-Quoc [17] 
Load 
level 
(lb) u v w u v w u v w 
300 -7.20 -12.21 -40.53 -6.8 -11.5 -39.5 -6.97 -11.86 -40.08
450 -10.94 -18.78 -48.75 -- -- -- -10.68 -18.38 -48.39
600 -13.75 -23.86 -53.64 -13.4 -23.5 -53.4 -13.51 -23.47 -53.37

 
6.3 A Space Arc Frame Subject to Concentrated Loading 
 
This arc frame consists of two groups of members (Figure 8). The cross-section properties of the 
members in the arc frame planes are A1=0.5, Iy1=0.4 and Iz1=0.133, respectively, and for the rib 
members, A2=0.1, Iy2=0.05 and Iz2=0.05, respectively. The material properties are E=4.32×105 and 
G=1.66×105. This frame is pinned at four boundary nodes. In addition to four vertical concentrated 
loads P, the structure is also subjected to two lateral concentrated loads 0.001P (Figure 8). 
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Figure 8. Space Arc Frame 

 
In numerical analysis, each member is treated as one element. The deflection curve at Point A of the 
arc frame is presented in Figure 9, it is in close agreement with the solution from Wen and 
Rahimzadeh [28]. 
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Figure 9. Response of Space Arc Frame under Ultimate Concentrated Loading 

 
 

7. CONCLUSIONS 
 
A mixed co-rotational 3D beam element formulation is proposed by using the Hellinger-Reissner 
functional, where vectorial rotational variables are employed to replace traditional angular 
rotational variables, taking advantages in calculating the element tangent stiffness matrix. The 
equivalent components of the external force vector with respect to vectorial rotational variables can 
be calculated directly from corresponding end moment and torque, thus this element can also be 
used in modelling of beams subject to end moment and torque. Through three patch tests of locking 
problems, the present beam element demonstrates its locking-free behaviours, and its 
computational accuracy and efficiency are verified by multiple elastic examples of large 
displacement and large rotation problems.  
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