Advanced Steel Construction

Vol. 4, No. 3, pp. 198-209 (2008)


NUMERICAL ANALYSIS BY VIRTUAL TESTING REPLACING EXPERIMENTS

WITH TENSION ROD SYSTEMS

 

Albrecht Gehring 1,*, Richard Goodman 2, Helmut Saal 3 and Chris Willett 4

1 Engineering consultant, Lauer & Weiss GmbH, Höhenstraße 21, 70736 Fellbach, Germany

2 Engineering design manager, Macalloy Limited, Caxton Way, Dinnington, S25 3QE, United Kingdom

3 Professor, Versuchsanstalt für Stahl, Holz und Steine, Universität Karlsruhe (TH), Germany

4 Sales director, Macalloy Limited, Caxton Way, Dinnington, S25 3QE, United Kingdom

* (Corresponding author: E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.)

Received: 31 January 2007; Revised: 22 August 2007; Accepted: 4 September 2007

 

DOI: 10.18057/IJASC.2008.4.3.3

 

View Article   Export Citation:Plain Text | RIS | Endnote

ABSTRACT

The resistance of tension rod systems can be calculated according to design codes, e.g. Eurocode 3 or DIN 18800-1. Often the real load bearing capacity is not activated by the calculated resistance – which is due to a conservative approach of the analytical design methods. The real load bearing capacity of the whole system can be evaluated by a series of ultimate load tests. The results of these tests lead to technical approvals. This procedure takes a lot of time and is very cost intensive. Therefore some European building authorities are allowing virtual tests to reduce both costs and time. A general strategy for preparing and performing virtual tests of tension rod systems is presented in this paper. Special attention is paid to generate a clear numerical model with respect to possible failure modes. The application of this strategy is illustrated by an example of virtual tests which led to a technical approval in Germany.

 

KEYWORDS

Tension rod system; finite-element analysis; virtual testing; failure criteria; static resistance


REFERENCES

[1] Kathage, K., Ruf, D.C. and Ummenhofer, T., “Zugstäbe und ihre Anschlüsse“, In: Kuhlmann, U. (Editor), Stahlbau-Kalender 2005, Verlag Ernst & Sohn, 2006, pp. 725-784.

[2] EN 1993-1-1:2005-07: Eurocode 3: Design of Steel Structures – Part 1-1: General Rules and Rules for Buildings.

[3] EN 1993-1-8:2005-07: Eurocode 3: Design of Steel Structures – Part 1-8: Design of Joints.

[4] DIN 18800-1:1990-11: Stahlbauten – Bemessung und Konstruktion.

[5] Anpassungsrichtlinie Stahlbau Fassung Dezember 1998, inkl. Änderungen und Ergänzungen Ausgabe Dezember 2001, DIBt Mitteilungen 2002. Sonderheft 11.

[6] CUAP (Common Understanding of Assessment Procedure), “Tension Rod System”, Deutsches Institut für Bautechnik, Berlin, 2003.

[7] “Gemeinsame Erklärung des CSTB und DIBt zur technischen Bewertung von Bauprodukten auf Grundlage virtueller Versuche mit dem Ziel der Kostenreduzierung im Bauwesen“, DIBt Mitteilungen, 2004, Vol. 35, No. 5, pp. 146-147.

[8] Breitschaft, G. and Häusler, V., “Verwendung von rechnerischen Nachweisen bei Erteilung von Zulassungen“, DIBt Mitteilungen, 2004, Vol. 35, No. 5, pp. 147-149.

[9] Kathage, K., “Finite-Elemente-Berechnungen als Grundlage zur Erteilung von Zulassungen für Zugstabsysteme“, DIBt Mitteilungen, 2004, Vol. 35, No. 5, pp. 149-151.

[10] Saal, H. and Gehring, A., Gutachten Nr. 044074: Änderung und Ergänzung der bauaufsichtlichen Zulassung Z-14.4-427“, Versuchsanstalt für Stahl, Holz und Steine, Universität Karlsruhe (TH), 2004, Unpublished.

[11] Allgemeine bauaufsichtliche Zulassung Z-14.4-427, “Zugstabsystem MACALLOY 460“, Deutsches Institut für Bautechnik, Berlin, 2004.

[12] VDI-Richtlinie 2230 Blatt 1:2003-02: Systematische Berechnung hochbeanspruchter Schraubenverbindungen - Zylindrische Einschraubenverbindungen.

[13] Saal, H and Bechtold, M., “Zugstäbe und Seile. Vielfalt der Möglichkeiten? Gestaltung und Nachweis“, In: Proceeding of 25th Stahlbauseminar Neu-Ulm, Biberach, 2003.

[14] ABAQUS/Standard. Version 6.4.1. Copyright 2003. ABAQUS, Inc.

[15] ABAQUS Documentation – Version 6.4. Copyright 2003. ABAQUS, Inc.