Advanced Steel Construction

Vol. 16, No. 3, pp. 272-278 (2020)


 INFLUENCE OF DIFFERENT SHAPES OF GEOMETRIC IMPERFECTIONS ON THE

STRUCTURAL BEHAVIOR OF BEAMS WITH LARGE WEB OPENINGS

 

Teixeira F. B. *, Caldas R. B.and Grilo L. F.

Federal University of Minas Gerais, Belo Horizonte, Brazil

*(Corresponding author: E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.)

Received: 8 October 2019; Revised: 7 June 2020; Accepted: 22 June 2020

 

DOI:10.18057/IJASC.2020.16.3.8

 

View Article   Export Citation: Plain Text | RIS | Endnote

ABSTRACT

This paper explores the influence of four different shapes of geometric imperfection upon the collapse of castellated and cellular beams. A numerical model developed in ANSYS and calibrated against experimental results was used to investigate the effects of each imperfection shape. The global imperfection (weak-axis bending) did not affect web-post stability. Web-post bending favored the development of plastic yielding, while web-post misalignment and the local buckling mode strongly compromised web-post stability. The choice of imperfection shape was shown to determine the failure mode of the beams, directly affecting the quality of the numerical results and potentially influencing design decisions.

 

KEYWORDS

large web opening, geometric imperfection, numerical analysis, web-post buckling, lateral-torsional buckling


REFERENCES

[1] F. Erdal, Ultimate load capacity of optimally designed cellular beams, Ph.D. thesis, Middle East Technical University (2011).

[2] D. Sonck, Global buckling of castellated and cellular steel beams and columns, Ph.D. thesis, Ghent University (2014).

[3] N. Boissonnade, J. Nseir, M. Lo, H. Somja, Design of cellular beams against lateral torsional buckling, Proceedings of the Institution of Civil Engineers - Structures and Buildings 167 (2014) 436444. doi:10.1680/stbu.12.00049.

[4] J. Nseir, M. Lo, D. Sonck, H. Somja, O. Vassart, N. Boissonnade, Lateral torsional buckling of cellular steel beams, Proceedings of the Annual Stability Conference - Structural Stability Research Council (2012).

[5] R. M. Lawson, S. J. Hicks, Design of Composite Beams with Large Web Openings, SCI, 2011.

[6] J. Warren, Ultimate load and deection behaviour of cellular beams, Master's thesis, School of Civil Engineering, Surveying and Construction - University of Natal (2001).

[7] K. Chung, T. Liu, A. Ko, Investigation on vierendeel mechanism in steel beams with circular web openings, Journal of Constructional Steel Research 57 (5) (2001) 467  490. doi:https://doi.org/10.1016/S0143-974X(00) 00035-3.

[8] W. B. Vieira, Estudo numérico-experimental da ambagem do montante de alma em vigas casteladas de aço, Ph.D. thesis, Universidade Federal de Viçosa (2015).

[9] K. D. Tsavdaridis, C. D'Mello, Web buckling study of the behaviour and strength of perforated steel beams with dierent novel web opening shapes, Journal of Constructional Steel Research 67 (10) (2011) 1605  1620. doi: https://doi.org/10.1016/j.jcsr.2011.04.004.

[10] D. Kerdal, D. Nethercot, Failure modes for castellated beams, Journal of Constructional Steel Research 4 (4) (1984) 295 - 315. doi:https://doi.org/10.1016/0143-974X(84)90004-X.

[11] Guo J., Research on distribution and magnitude of initial geometrical imperfection affecting stability of suspen-dome, Advanced Steel Construction Vol. 7, No. 4, pp. 344-358 (2011).

[12] Zhao Z. W., Liu H. Q., Liang B., Yan R. Z., Influence of random geometrical imperfection on the stability of single-layer reticulated domes with semi-rigid connection, Advanced Steel Construction Vol. 15, No. 1 (2019) 93-99. DOI: 10.18057/IJASC.2019.15.1.12.

[13] Masri O. Y. E., Lui E. M., Influence of imperfections on the flexural resistance of steel delta girders, Advanced Steel Construction Vol. 15, No. 2 (2019) 157-164. DOI: 10.18057/IJASC.2019.15.2.5.

[14] E. Ellobody, Nonlinear analysis of cellular steel beams under combined buckling modes, Thin-Walled Structures 52 (2012) 66 - 79. doi: https://doi.org/10.1016/j.tws.2011.12.009.

[15] E. Ellobody, Interaction of buckling modes in castellated steel beams, Journal of Constructional Steel Research 67 (2011) 814 - 825. doi: https://doi.org/10.1016/j.jcsr.2010.12.012.

[16] Gehring A., Saal H., Numerical analyses of cold-formed thin-walled sections with consideration of imperfections due to the production process, Advanced Steel Construction Vol. 5, No. 2, pp. 151-163 (2009).

[17] ArcelorMittal, Angelina beams - A new generation of castellated beams (2016).

[18] I. ANSYS, ANSYS Mechanical APDL, Release 14.0 - Help System (2011).

[19] G. S. Veríssimo, E. K. H. Sakiyama, J. L. R. Paes, J. C. L. Ribeiro, R. H. Fakury, R. B. Caldas, W. B. Vieira, Estudo numérico-experimental do desempenho estrutural de vigas alveolares soldadas, Tech. rep., Universidade Federal de Viçosa (2017).

[20] EN, EN 1993-1-5 Eurocode 3: Design of steel structures - Part 1-5: General rules - Plated structural elements, CEN, Brussels, 2006.