Vol. 17, No. 4, pp. 331-339 (2021)
NUMERICAL ANALYSIS AND EVALUATION OF EFFECTIVE SLAB WIDTH OF
COMPOSITE CONTINUOUS BEAMS WITH SEMI-RIGID JOINT
Abdesselam Bahaz 1, *, Salah Amara 1, Jean-Pierre Jaspart 2 and Jean-François Demonceau 2
1 Structures Rehabilitation and Materials Laboratory (SREML), Amar Telidji University of Laghouat, Algeria
2 Urban and Environmental Engineering (UEE) Department, University of Liege, Belgium
*(Corresponding author: E-mail:This email address is being protected from spambots. You need JavaScript enabled to view it.)
Received: 13 March 2021; Revised: 21 May 2021; Accepted: 24 May 2021
DOI:10.18057/IJASC.2021.17.4.1
View Article | Export Citation: Plain Text | RIS | Endnote |
ABSTRACT
The characterization of the structural behavior of composite beams is directly affected by the determination of the effective slab width. Various codes propose their own definitions of the effective width based on the beam span and the slab width parameters. However, the evaluation of the effective width may be influenced by other parameters. The aim of this work is to determine the most important factors affecting effective width for continuous composite beams with semi-rigid joints using numerical simulations. A three-dimensional finite element model of a composite continuous beam using explicit-solver available in ABAQUS is developed. The proposed model is validated through comparisons to available experimental results. A modified model is proposed based on the so-validated model to study the influence of the composite beam-column joint stiffness on the effective width. Then, both numerical models are used to perform an extensive parametric study to investigate the influence of various parameters on the estimation of the effective slab width. The influence of slab width, the shear connection degree, and composite joint stiffness are particularly analyzed to find out the most important parameters influencing the effective width so that simplified equations for the calculation of the effective slab width are proposed.
KEYWORDS
Composite beams, Effective width, Numerical analysis, Semi-rigid joints, Shear-lag
REFERENCES
[1] Yuan, H., Deng, H., Yang, Y., Weijian, Y. and Zhenggeng, Z., “Element-based effective width for deflection calculation of steel-concrete composite beams,” Journal of Constructional Steel Research, 121, 163‑172, 2016. Doi: https://doi.org/10.1016/j.jcsr.2016.02.010
[2] European Committee for Standardization (CEN), Design of composite steel and concrete structures, Part 1-1: General rules for buildings, EN 1994-1-1 Eurocode 4, Brussels, 2004.
[3] GB50017, Code for Design of Steel Structures, Beijing, Ministry of Construction of People’s Republic of China, 2003.
[4] AISC, load, and resistance factor design specifications for structural steel buildings, Chicago, American Institute of Steel Construction, 2010.
[5] Amadio, C. and Fragiacomo, M., “Effective width evaluation for steel-concrete composite beams,” Journal of Constructional Steel Research, 58(3), 373‑388, 2002. Doi: https://doi.org/10.1016/S0143-974X(01)00058-X
[6] Amadio, C., Fedrigo, C., Fragiacomo, M. and Macorini, L., “Experimental evaluation of effective width in steel-concrete composite beams,” Journal of Constructional Steel Research, 60(2), 199‑220, 2004. Doi: https://doi.org/10.1016/j.jcsr.2003.08.007
[7] Salama, T., and Nassif, H. H., “Effective flange width for composite steel beams,” The Journal of Engineering Research [TJER], 7(2), 28, 2011.Doi: https://doi.org/10.24200/tjer.vol8iss1pp28-43
[8] Lasheen, M., Shaat, A. and Khalil, A., “Numerical evaluation for the effective slab width of steel-concrete composite beams,” Journal of Constructional Steel Research, 148, 124‑137, 2018. Doi: https://doi.org/10.1016/j.jcsr.2018.05.015
[9] Al-Sherrawi, M. H. and Dawood, A. R., “Shear -lag in continuous composite steel-concrete beam,” International Research Journal of Advanced Engineering and Science, vol. 4, issue 1, pp. 85-90, 2019.
[10] Transportation Research Board and National Academies of Sciences, Engineering, and Medicine. Effective slab width for composite steel bridge members. Transportation Research Board, 2005. Doi: https://doi.org/10.17226/13853
[11] Nie, J. and Tao, M., “Slab spatial composite effect in composite frame systems. I : Effective width for ultimate loading capacity”, Journal of Engineering Structures, 38, 171‑184, 2012. Doi: https://doi.org/10.1016/j.engstruct.2011.11.034
[12] Khalaf, M., El-Shihy, A., El-Kasaby, E.-S. and Youssef, A., “Numerical estimation and analysis of effective width of composite beams with ribbed slab,” International Journal of Application or Innovation in Engineering and Management 3 (8) 1–15, 2014.
[13] Dezi, L., Gara, F. and Leoni, G., “Effective slab width in prestressed twin-girder composite decks,” Journal of Structural Engineering, 132(9), 1358‑1370, 2006.
Doi: https://doi.org/10.1061/(ASCE)0733-9445(2006)132:9(1358)
[14] Gara, F., Leoni, G., and Dezi, L., “A beam finite element including shear lag effect for the time-dependent analysis of steel-concrete composite decks,” Journal of Engineering Structures, 31(8), 1888‑1902, 2009. Doi:https://doi.org/10.1016/j.engstruct.2009.03.017
[15] Nicoletti, R. S., Rossi, A., Souza, A. S. C. de and Martins, C. H., “Numerical assessment of effective width in steel-concrete composite box girder bridges,” Journal of Advances in Structural Engineering, 24(5), 977‑994, 2021. Doi: https://doi.org/10.1177/1369433220971744
[16] Gara, F., Ranzi, G., & Leoni, G., “Partial interaction analysis with shear-lag effects of composite bridges: a finite element implementation for design applications.”, Journal of Advanced Steel Construction, 7(1), 1-16, 2011. Doi: https://doi.org/10.18057/IJASC.2011.7.1.1
[17] MathWorks, Inc. MATLAB R2016a. Natick, MA: Math Works, Inc.; 2016.
[18] ABAQUS, ABAQUS Analysis User’s Guide, Version 6.14, Dassault Systèmes Corp., Providence, RI (USA), 2014.
[19] Thai, H.-T. and Uy, B., “Finite element modeling of blind bolted composite joints,” Journal of Constructional Steel Research, 112, 339‑353, 2015. Doi: https://doi.org/10.1016/j.jcsr.2015.05.011
[20] Aribert , J. and Al Bitar , A., “Optimisation du dimensionnement en connexion partielle de poutres de planchers mixtes réalisés avec un bec en tôle mince nervurée”, La revue Construction métallique 26 (4) 3–33, 1989.
[21] Yun, X. and Gardner, L., “Stress-strain curves for hot-rolled steels,” Journal of Constructional Steel Research, 133, 36‑46, 2017. Doi: https://doi.org/10.1016/j.jcsr.2017.01.024
[22] Carreira, D. J., and Chu, K. H. “Stress-strain relationship for plain concrete in compression,” ACI Journal Proceedings, 82(6), 1985. Doi: https://doi.org/10.14359/10390
[23] Al-Jabri, K. S., Pillay, P., Waris, M. B. and Pervez, T., “Modeling of composite beam-column flexible endplate joints at elevated temperature,” Journal of Composite Structures, 143, 180-188, 2016. Doi: https://doi.org/10.1016/j.compstruct.2016.01.069
[24] Dai, X. H., Wang, Y. C., and Bailey, C. G., “Numerical modeling of structural fire behavior of restrained steel beam-column assemblies using typical joint types,” Journal of Engineering Structures, 32(8), 2337-2351, 2010. Doi: https://doi.org/10.1016/j.engstruct.2010.04.009
[25] Janss, J. and Jean-Claude, L., Essais de poutres mixtes sur troisappuis, Centre de Recherches Scientifiques et Techniques de l’Industrie des Fabrications Métalliques, Bruxelles, 1973.
[26] Che, S. and Zhang, Z., “Effective width of a concrete slab in steel-concrete composite beams prestressed with external tendons,” Journal of Constructional Steel Research 62 (5) 493–500, 2006. Doi: https://doi.org/10.1016/j.jcsr.2005.08.009
[27] CEN. EN 1993-1-8. Eurocode 3: Design of steel structures, part 1-8: Design of joints, Brussels: CEN; 2005.