Vol. 18, No. 3, pp. 670-678 (2022)
LOW-TEMPERATURE COMPRESSION BEHAVIOUR OF CIRCULAR STUB STAINLESS-STEEL TUBULAR COLUMNS
Jia-Bao Yan 1, 2, Biao Zhang 2, Jun-Ying Feng 2, Yan-Sheng Du 1, 2, *, Yun-Biao Luo 1, 2 and Yun-Dong Shi 1, 2
1 Key Laboratory of Coast Civil Structure Safety of Ministry of Education, Tianjin University, Tianjin 300350, China
2 School of Civil Engineering, Tianjin University, Tianjin 300350, China
*(Corresponding author: E-mail:This email address is being protected from spambots. You need JavaScript enabled to view it.)
Received: 26 June 2021; Revised: 16 December 2021; Accepted: 21 December 2021
DOI:10.18057/IJASC.2022.18.3.4
View Article | Export Citation: Plain Text | RIS | Endnote |
ABSTRACT
This paper firstly studies mechanical properties of stainless steel (SS) S30408 at the low temperature (T) range of -80~20℃. Further compression tests are carried out on 20 SS stub tubular columns (SSSTCs) at low temperatures of -80, -60, -30, and 20℃ to investigate their low-temperature compression behaviour. Including the testing low temperatures, the wall thickness of SS tube (t) is the other investigated parameters. Test results show that decreasing the T from 20 to -80℃ improves the yield and ultimate strength of stainless steel by 29% and 80%, respectively, but reduces its ductility by about 25%. Under low-temperature compression, elephant foot local buckling occurs to most of SSSTCs and inelastic inward and outward local buckling occurred to specimens with 6 mm-thick SS tube. Test results also show that the decreasing T value increases the strength and stiffness of SSSTCs, but compromises their ductility; the wall thickness of SSSTCs significantly improves their strength, stiffness, and ductility. This paper also develops 3D finite element model (FEM) to estimate the low-temperature compression behaviour of SSSTCs, which considers nonlinearities of material and geometry, geometric imperfections, and influences of low temperatures. The validations show it predicts reasonably well the low-temperature compression behaviours of SSSTCs.
KEYWORDS
Stainless steel, Low temperature, Compression test, Arctic engineering, Finite element, Compression behaviour
REFERENCES
[1] Gardner L., “The use of stainless steel in structures”, Prog. Struct. Eng. Mater., 7 (2), 45-55, 2005.
[2] Burgan B., “Guidance on the use of stainless steel in construction, Structural applications of stainless steel in building and architecture”, Brussels, 2000.
[3] Buchanana Craig, Zhao Ou, Real Esther, Gardner L., “Cold-formed stainless steel CHS beam-columns-Testing, simulation and design”, Struct. Eng., 213, 110270, 2020.
[4] Gardner L., “Aesthetics, economics and design of stainless steel structures”, Adv. Steel Constr., 4(2), 113-122, 2008.
[5] Anwar U.H., Hani M.T., Nureddin M.A., “Failure of weld joints between carbon steel pipe and 304 stainless steel elbows”, Eng. Fail. Anal., 12, 181-191, 2015.
[6] Fissoloa A., Stelmaszykb J.M., Gourdin C., Bouin P., Pérez G., “Thermal fatigue loading for a type 304-L stainless steel used for pressure water reactor: investigations on the effect of a nearly perfect biaxial loading, and on the cumulative fatigue life”, Procedia Eng., 2, 15951604, 2010.
[7] Guan K., Wang Z.M., Gao M., Li X.Y., Zeng X.Y., “Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel”, Mater. Des., 50, 581-586, 2013.
[8] Xie J., Cui N., Yan J.B., Yu J.H., “Experimental study on prestress losses of post-tensioned concrete members at ultra-low temperatures”. Struct. Concrete., 20, 1828-1841, 2019.
[9] Rasmussen K.J.R., “Full range stress–strain curves for stainless steel alloys”, J. Constr. Steel Res., 59, 47-61, 2003.
[10] Ashraf M., Gardner L., Nethercot D.A., “Strength enhancement of the corner regions of stainless steel cross-sections”, J. Constr. Steel Res., 61 (1), 37-52, 2005.
[11] Gardner L., Nethercot D.A., “Experiments on stainless steel hollow sections-Part 1: Material and cross-sectional behaviour”, J. Constr. Steel Res., 60 (9), 1291-1318, 2004.
[12] Quach W. M., Teng J. G., Chung K. F., “Three-Stage Full-Range Stress-Strain Model for Stainless Steels”, J. Struct. Eng., 134 (9), 1518-1527, 2008.
[13] Gardner L., Yun X., “Description of stress-strain curves for cold-formed steels”, Constr. Build. Mater., 189, 527-538, 2018.
[14] Sakumoto Y., Nakazato T., Matsuzaki A., “High-temperature properties of stainless steel for building structures”, J. Struct. Eng., 122 (4), 399-406, 1996.
[15] Chen J., Young B., “Stress–strain curves for stainless steel at elevated temperatures”, Eng. Struct., 28 (2), 229-239, 2006.
[16] Gardner L., Insausti A., Ng K.T., Ashraf M., “Elevated temperature material properties of stainless steel alloys”, J. Constr. Steel Res., 66 (5), 634-647, 2019.
[17] Wang X., Zhang J., DU Y., “High temperature mechanical properties of 00Cr17Ni14Mo2 stainless steel”, J. Build. Mater., 18 (5), 767-772, 2015.
[18] Liang Y., Manninen T., Zhao O., Walport F., Gardner L., “Elevated temperature material properties of a new high-chromium austenitic stainless steel”, J. Constr. Steel Res., 152, 261-273, 2019.
[19] Fan S.G., Jia L.L., Lyu X., Sun W.J., Chen M.H., Zheng J.C., “Experimental investigation of austenitic stainless steel material at elevated temperatures”, Constr. Build. Mater., 155, 267-285, 2017.
[20] Fan S.G., Ding R.M., Zheng J.C., Xie F.Z., Wu Q.X., “Refined Model for the Stress-Strain Curve of Austenitic Stainless-Steel Materials at Elevated Temperatures”, J. Mater. Civ. Eng., 32 (4), 04020032, 2020.
[21] Rasmussen KJR, “Recent research on stainless steel tubular structures”, J. Constr. Steel Res., 54 (1), 75-88, 2000.
[22] Young B., Hartono W., “Compression tests of stainless steel tubular members”, J. Struct. Eng.,128, 754-761, 2002.
[23] Lui W.M., Ashraf M., Young B., “Tests of cold-formed duplex stainless steel SHS beam-columns”, Eng. Struct., 74, 111-121, 2014.
[24] Huang Y., Young B., “Experimental investigation of cold-formed lean duplex stainless steel beam-columns”, Thin-Walled Struct., 76, 105-117, 2014.
[25] Arrayago I., Real E., Mirambell E., “Experimental study on ferritic stainless steel RHS and SHS beam-columns”, Thin-Walled Struct., 100, 93-104, 2016.
[26] Bu Y., Gardner L., “Laser-welded stainless steel I-section beam-columns: Testing, simulation and design”, Eng. Struct., 179, 23-36, 2019.
[27] Greiner R., Kettler M., “Interaction of bending and axial compression of stainless steel members”, J. Constr. Steel Res., 64 (11), 1217-1224, 2008.
[28] Zhao O., Gardner L., Young B., “Buckling of ferritic stainless steel members under combined axial compression and bending”, J. Constr. Steel Res., 117, 35–48, 2016.
[29] Cai Y., Young B., “Structural behaviour of cold-formed stainless steel bolted connections at post-fire condition”, J. Constr. Steel Res., 152, 213-321, 2019.
[30] Salih E.L., Gardner L., Nethercot D.A., “Numerical investigation of net section failure in stainless steel bolted connections”, J. Constr. Steel Res., 66 (12), 1455-1466, 2010.
[31] Elflah M., Theofanous M., Dirar S., Yuan H., “Behaviour of stainless steel beam-to-column joints — Part 1: experimental investigation”, J. Constr. Steel Res., 152, 183-193, 2019.
[32] GB/T 13239-2006, Metallic Materials – Tensile Testing at Low Temperature, China Standards Press, Beijing, 2006.
[33] Zhang R., Gardner L., Buchanan C., Matilainen VP., Piili H., Salminen A., “Testing and analysis of additively manufactured stainless steel CHS in compression”, Thin-Walled Struct., 159, 107270, 2021.
[34] Buchanan C., Matilainen V.P., Salminen A., Gardner L., “Structural performance of additive manufactured metallic material and cross-sections”, J. Constr. Steel Res., 136, 35-48, 2017.
[35] Yan J.B., Dong X., Zhu J., “Behaviours of stub steel tubular columns subjected to axial compression at low temperatures”, Constr. Build. Mater., 228, 116788, 2019.
[36] Guler S., Lale E., Aydogan M., “Behaviour of SFRC filled steel tube columns under axial load”, Adv. Steel Constr., 9(1), 14-25, 2013.
[37] Yan J.B., Luo Y.L., Su L., Lin X., Luo Y.B., Zhang L.X., “Low-temperature compression behaviour of square CFST columns using Q960 ultra-high strength steel”, Constr. Build. Mater., 183, 106727, 2021.
[38] Hibbitt H.D., Karlson B.I., Sorensen, EP (2009) ABAQUS/standard user’s manual, Version 6.14, 2014.
[39] Fan S.G., Li S., He B. B., Jia, L. L., Ding R. M., “Fire resistance performance analysis of high-strength steel Q550 columns under axial compression”, Adv. Steel Constr., 15(2), 185-191, 2019.
[40] Gardner L., Nethercot D.A., “Numerical modeling of stainless steel structural components-A consistent approach”, J. Struct. Eng., 130 (10), 1586-1601, 2004.