Advanced Steel Construction

Vol. 19, No. 2, pp. 143-149 (2023)


 HIGH PRECISION IDENTIFICATION METHOD OF MASS AND STIFFNESS

MATRIX FOR SHEAR-TYPE FRAME TEST MODEL

 

Jin-Peng Tan 1, 2 and Dan-Guang Pan 1, *

1 Department of Civil Engineering, University of Science and Technology Beijing, Beijing 100083, China

2 Huachengboyuan Engineering Technology Group Co., Beijing 100052, China

* (Corresponding author: E-mail:This email address is being protected from spambots. You need JavaScript enabled to view it.)

Received: 22 April 2022; Revised: 21 July 2022; Accepted: 27 July 2022

 

DOI:10.18057/IJASC.2023.19.2.6

 

View Article   Export Citation: Plain Text | RIS | Endnote

ABSTRACT

In the direct method of identifying the physical parameters of the shear-type frame structures through the frequencies and modes from the experimental modal analysis (EMA), the accuracy of the lumped mass depends on the initial mass, while the identified mass matrix and stiffness matrix are prone to generate some matrix elements without any physical meaning. In this paper, based on the natural frequencies and modes obtained from the EMA, an iterative constrained optimization solution for correcting mass matrix and a least squares solution for the lateral stiffness are proposed. The method takes the total mass of the test model as the constraint condition and develops an iterative correction method for the lumped mass, which is independent of the initial lumped mass. When the measured modes are exact, the iterative solution converges to the exact solution. On this basis, the least squares calculation equation of the lateral stiffness is established according to the natural frequencies and modes. Taking the numerical model of a 3-story steel frame structure as an example, the influence of errors of measured modes on the identification accuracy is investigated. Then, a 2-story steel frame test model is used to identify the mass matrix and stiffness matrix under three different counterweights. Numerical and experimental results show that the proposed method has good accuracy and stability, and the identified mass matrix and stiffness matrix have clear physical significance.

 

KEYWORDS

Shear-type frame, Test model, Physical parameter identification, Mass matrix, Stiffness matrix


REFERENCES

[1] G. Q. Li, J. Z. Zhang, L. L. Li, et al., “Progressive collapse resistance of steel framed buildings under extreme events”, Advanced Steel Construction, Vol. 17, pp. 318-330, 2021. Doi: 10.18057/IJASC.2021.17.3.10

[2] A. L. Zhang, G. H. Shangguan, Y. X. Zhang, et al., “Experimental study of resilient prefabricated steel frame with all-bolted beam-to-column connections”, Advanced Steel Construction, Vol. 16, pp. 255-271, 2020. Doi: 10.18057/IJASC.2020.16.3.7

[3] J. P. Yang, P. Z. Li, Z. Lu., “Large-scale shaking table test on pile-soil-structure interaction on soft soils”, The Structural Design of Tall and Special Buildings, Vol. 28, pp. 1679, 2019. Doi: 10.1002/tal.1679

[4] Q. Wang, J. T. Wang, F. Jin, et al., “Real-time dynamic hybrid testing for soil–structure interaction analysis”, Soil Dynamics and Earthquake Engineering, Vol. 31, pp. 1690-1702, 2011. Doi: 10.1016/j.soildyn.2011.07.004

[5] K.S. Al-Jabri, S. M. Al-Alawi, A. H. Al-Saidy, et al., “An artificial neural network model for predicting the behaviour of semi-rigid joints in fire”, Advanced Steel Construction, Vol. 5, pp. 452-464, 2009.

[6] J. E. Mottershead, M. I. Friswell., “Model updating in structural dynamics: A survey”, Journal of Sound and Vibration, Vol. 167, pp. 347-375, 1993. Doi: 10.1006/jsvi.1993.1340

[7] X. Zhou, Y. Xia, S. Weng., “L1 regularization approach to structural damage detection using frequency data”, Structural Health Monitoring, Vol. 14, pp. 571-582, 2015. Doi: 10.1177/1475921715604386

[8] W. X. Ren, H. B. Chen., “Finite element model updating in structural dynamics by using the response surface method”, Engineering Structures, Vol. 32, pp. 2455-2465, 2010. Doi: 10.1016/j.engstruct.2010.04.019

[9] Y. F. Xu, W. D. Zhu, S. A. Smith., “Non-model-based damage identification of plates using principal, mean and Gaussian curvature mode shapes”, Journal of Sound and Vibration, Vol. 400, pp. 626-659, 2021. Doi: 10.1016/j.jsv.2017.03.030

[10] A. K. Panda, S. V. Modak., “An FRF-based perturbation approach for stochastic updating of mass, stiffness and damping matrices”, Mechanical Systems and Signal Processing, Vol. 166, pp. 108416, 2022. Doi: 10.1016/j.ymssp.2021.108416

[11] S. Pradhan, S. V. Modak., “A two-stage approach to updating of mass, stiffness and damping matrices”, International Journal of Mechanics Sciences, Vol. 140, pp. 133-150, 2018. Doi: 10.1016/j.ijmecsci.2018.02.033

[12] X. G. Li, F. S. Liu., “A nonmode-shape-based model updating method for offshore structures using extracted components from measured accelerations”, Applied Ocean Research, Vol. 121, pp. 103087, 2022. Doi: 10.1016/j.apor.2022.103087

[13] J. E. Mottershead, M. Link, M. I. Friswell., “The sensitivity method in finite element model updating: A tutorial”, Mechanical Systems and Signal Processing, Vol. 25, pp. 2275-2296, 2011. Doi: 10.1016/j.ymssp.2010.10.012

[14] V. Alves, M. Oliveira, D. Ribeiro, et al., “Model-based damage identification of railway bridges using genetic algorithms”, Engineering Failure Analysis, Vol. 118, pp. 104845, 2020. Doi: 10.1016/j.engfailanal.2020.104845

[15] H. Y. Gou, T. Q. Zhao, S. Q. Qin, et al., “In-situ testing and model updating of a long-span cable-stayed railway bridge with hybrid girders subjected to a running train”, Engineering Structures, Vol. 253, pp. 113823, 2022. Doi: 10.1016/j.engstruct.2021.113823

[16] R. Ghanem, M. Shinozuka., “Structural system identification. I: Theory”, Journal of Engineering Mechanics, Vol. 121, pp. 255-264, 1995. Doi: 10.1061/(ASCE)0733-9399(1995)121:2(255)

[17] A Berman., “Mass matrix correction using an incomplete set of measured modes”, AIAA Journal, Vol. 17, pp. 1147-1148, 1979. Doi: 10.2514/3.61290

[18] P. Jack, T. P. Holman, M. Mott-Smith, et al., “Optimal correction of mass and stiffness matrices using measured modes”, AIAA Journal, Vol. 20, pp. 1623-1626, 1982. Doi: 10.2514/3.7995

[19] F.S. Wei., “Analytical dynamic model improvement using vibration test data”, AIAA Journal, Vol. 28, pp. 175-177, 1990. Doi: 10.2514/3.10371

[20] F.S. Wei., “Mass and stiffness interaction effects in analytical model modification”, AIAA Journal. Vol. 28, pp. 1686-1688, 1990. Doi: 10.2514/3.25269

[21] E. T. Lee, H. C. Eun., “Correction of stiffness and mass matrices utilizing simulated measured modal data”, Applied Mathematical Modelling, Vol. 33, pp. 2723-2729, 2009. Doi: 10.1016/j.apm.2008.08.010

[22] E. T. Lee, H. C. Eun., “Update of corrected stiffness and mass matrices based on measured dynamic modal data”, Applied Mathematical Modelling, Vol. 33, pp. 2274-2281, 2009. Doi: 10.1016/j.apm.2008.06.004

[23] W. R. Qi., “Damping model and seismic response analysis of frame structures”, University of Science and Technology Beijing, 2021. (in Chinese)

[24] G. L. Gladwell., “Inverse problems in vibration”, Springer Netherlands, Waterloo, Ontario, Canada, 2005.

[25] R. W. Clough, J Penzien. “Dynamics of structures”, 2nd Edition, Computers and structures, Inc., Berkeley, CA, USA, 1995.

[26] G. B. Wang, Y. Wang, H. T. Yu, et al., “Shaking table tests on seismic response of rocking frame structure considering foundation uplift”, Chinese Journal of Geotechnical Engineering, Vol. 43, pp. 2064-2074, 2021. Doi:10.13374/j.issn1001-053x.2014.12.020 (in Chinese)

[27] D. G. PAN, L. L. Gao., G. H. Jin, et al., “Model test of dynamic characteristics of structure-soil-structure system”, Journal of University of Science and Technology Beijing, Vol. 36, pp. 1720-1728, 2014. Doi: 10.13374/j.issn1001-053x.2014.12.020 (in Chinese)

[28] J. N. Juang, R. S. Pappa. “An eigensystem realization algorithm for modal parameter identification and model reduction”. Journal of Guidance, Control, and Dynamics, vol. 8, pp. 620-627. 1985. Doi:10.2514/3.20031