Vol. 19, No. 2, pp. 166-176 (2023)
POST-FIRE BEHAVIOR OF CROSS-SHAPED STEEL REINFORCED
CONCRETE COLUMNS: SIMULATION AND ANALYTICAL EXPRESSIONS
Tian-Gui Xu 1, Dun Liang 1, Sheng-Gang Fan 1, * and Wei Li 2
1 Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, School of Civil Engineering, Southeast University, Jiulonghu Campus, Nanjing, China
2 The IT Electronics Eleventh Design & Research Institute Scientific and Technological Engineering Corporation Limited, Shandong Branch, Jinan, China
* (Corresponding author: E-mail:This email address is being protected from spambots. You need JavaScript enabled to view it.)
Received: 23 November 2022; Revised: 3 March 2023; Accepted: 9 March 2023
DOI:10.18057/IJASC.2023.19.2.9
View Article | Export Citation: Plain Text | RIS | Endnote |
ABSTRACT
In order to explore the behavior of cross-shaped steel reinforced concrete (SRC) columns after fire, the heat transfer analysis model and structural analysis model were established by ABAQUS software. The simulation results of the cross-shaped column were compared with the existing test results, in the aspect of the temperature distribution, time-temperature curve, failure mode, and load-displacement relationship after fire exposure. The results show that the simulation results agree well with the experimental results. The influence of critical parameters on residual bearing capacity coefficient k was discussed, which including constant heating duration, maximum heating temperature, concrete strength, yield strength of section steel, yield strength of rebars, limb thickness, effective column length, rebar diameter, and steel content. Finally, a simplified formula was proposed to calculate the residual bearing capacity of cross-shaped SRC columns after fire.
KEYWORDS
Steel reinforced concrete column, Cross-shaped column, After fire exposure, Finite element analysis, Residual bearing capacity calculation
REFERENCES
[1] Hou, L.F., Li, M., Liu, Y.C., “Numerical Simulation and Analysis of On-building High-rise Building Fires”, Procedia Engineering, 11, 127-134, 2011. DOI: 10.1016/j.proeng.2011.04.637
[2] Zhang, B.J., Wang, Y.Z., Li, G.Q., Qu, S., Fu, C.G., Xu, T.G., “Structural performance of steel reinforced concrete T-shaped columns exposure to high temperature”, Structures, 34, 716-728, 2021. DOI: 10.1016/j.istruc.2021.08.023
[3] Wang, Y.Z., Xu, T.G., Liu, Z.Q., Li, G.Q., Jiang, J., “Seismic behavior of steel reinforced concrete cross-shaped columns after exposure to high temperatures”. Engineering Structures, 230, 111723, 2021. DOI: 10.1016/j.engstruct.2020.111723
[4] Wang, Y.Z., Wang, X., Li, G.Q., Jiang, J., Xu, T.G., “Residual Strength of L-shaped Steel Reinforced Concrete Columns after Exposure to High Temperatures”, KSCE Journal of Civil Engineering, 25(4), 1369-1384, 2021. DOI: 10.1007/s12205-021-0658-9
[5] Cao X.L., Wu L.M., Li Z.M., “Behaviour of steel-reinforced concrete columns under combined torsion based on ABAQUS FEA”. Engineering Structures, 209, 109980, 2020. DOI: 10.1016/j.engstruct.2019.109980.
[6] Yang Y., Chen Y., Feng S.Q., “Study on behavior of partially prefabricated steel reinforced concrete stub T columns under axial compression”. Engineering Structures, 199, 109630, 2019. DOI: 10.1016/j.engstruct.2019.109630.
[7] Xiang S., Zeng L., Liu Y.H., Mo J.X., Ma L.L., Zhang J.C., Chen J., “Experimental study on the dynamic behavior of T-shaped steel reinforced concrete columns under impact loading”. Engineering Structures, 208, 110307, 2020. DOI: 10.1016/j. engstruct.2020.110307.
[8] Xue Y.C., Yang Y., Yu Y.L., “Shear strength model for steel reinforced concrete composite members: Short columns and deep beams”. Engineering Structures, 216, 110748, 2020. DOI: 10.1016/j.engstruct.2020.110748.
[9] JGJ138-2001. “Technical specification for steel reinforced concrete composite structures”, China Ministry of Construction, 2001. (in Chinese)
[10] YB9082-2006. “Technical specification of Steel-Reinforced Concrete Structures”, Nation Development and Reform Commission, 2006. (in Chinese)
[11] JGJ138-2016. “Code for design of composite structures”, China Ministry of Construction, 2016. (in Chinese)
[12] Dong H. Y., Zhu J., Cao W.L., Rao, Y.X., “Axial compressive behavior of mega steel-reinforced high-strength concrete columns with different steel sections”. Structures, 48, 1158-1174, 2023. DOI: 10.1016/j.istruc.2023.01.017.
[13] Lai B.L., Zhang. M.Y., Zheng X.F. Chen Z.P., Zheng, Y.Y., “Experimental Study on the Axial Compressive Behaviour of Steel Reinforced Concrete Composite Columns with Stay-in-Place ECC Jacket”. Journal of Building Engineering, 106174, 2023. DOI: 10.1016/j.jobe.2023.106174.
[14] Zheng, Y.Q., Han, L.H., “Calculations on the fire resistance of steel reinforced concrete (SRC) columns”, Fourth International Conference on Advances in Steel Structures, 2, 1017-1022, 2005. DOI: 10.1016/B978-008044637-0/50149-9
[15] Han, L.H., Tan, Q.H., Song, T.Y., “Fire Performance of Steel Reinforced Concrete (SRC) Structures”, Procedia Engineering, 62, 46-55, 2013. DOI: 10.1016/j.proeng.2013.08.043
[16] Han, L.H., Tan, Q.H., Song, T.Y., “Fire Performance of Steel Reinforced Concrete Columns”, Journal of structural Engineering, 141(4), 28-37, 2015. DOI: 10.1061/(ASCE)ST.1943-541X.0001081
[17] Han, L.H., Zheng, Y.Q., Tao, Z., “Fire performance of steel-reinforced concrete beam-column joints”, Magazine of Concrete Research, 61(7), 499-518, 2009. DOI: 10.1680/macr.2008.61.7.499
[18] Song, T.Y., Han, L.H., Yu, H.X., “Temperature field analysis of SRC-column to SRC-beam joints subjected to simulated fire including cooling phase”, Advances in Structural Engineering, 14(3), 353-366, 2013. DOI:10.1260/1369-4332.14.3.353
[19] Young, B., Ellobody, E., “Performance of axially restrained concrete encased steel composite columns at elevated temperatures”, Engineering Structures, 33(1), 245-254, 2011. DOI: 10.1016/j.engstruct.2010.10.019
[20] Ellobody, E., “A consistent nonlinear approach for analyzing steel, cold-formed steel, stainless steel and composite columns at ambient and fire conditions”, Thin-Walled Structures, 68,1-17, 2013. DOI: 10.1016/j.tws.2013.02.016
[21] Zhang, C., Wang, G.Y., Xue, S.D., Yu, H.X., “Experimental research on the behaviour of eccentrically loaded SRC columns subjected to the ISO-834 standard fire including a cooling phase”, International Journal of Steel Structures, 16(2), 425-439, 2016. DOI: 10.1007/s13296-016-6014-0
[22] Meng, F.Q., Zhu, M.C., Mou, B., He, B.J., “Residual Strength of Steel-Reinforced Concrete-Filled Square Steel Tubular (SRCFST) Stub Columns After Exposure to ISO-834 Standard Fire”, International Journal of Steel Structures, 19(3), 850-866, 2018. DOI:10.1007/s13296-018-0174-z
[23] Han, L.H., Zhou, K., Tan, Q.H., Song, T.Y., “Performance of steel reinforced concrete columns after exposure to fire: Numerical analysis and application”, Engineering Structures, 211, 110421, 2020. DOI: 10.1016/j.engstruct.2020.110421
[24] Han, L.H., ASCE1, M., Zhou, K., Tan, Q.H., and Song, T.Y. “Performance of Steel-Reinforced Concrete Column after Exposure to Fire: FEA Model and Experiments”, Journal of Structural Engineering, 142 (9), 55-67, 2016. DOI: 10.1061/(ASCE)ST.1943-541X.0001511
[25] Chen, Z.P., Liang, Y.H., Mo, L.L., and Ban, M.G., “Residual Properties and Axial Bearing Capacity of Steel Reinforced Recycled Aggregate Concrete Column Exposed to Elevated Temperatures”, Frontiers in Materials, 7, 1-14, 2020. DOI: 10.3389/fmats.2020.00187
[26] Liu, F.Q., Yang, H., Yan, R., Wang, W., “Experimental and numerical study on behavior of square steel tube confined reinforced concrete stub columns after fire exposure”, Thin-Walled Structures, 139, 105-125, 2019. DOI: 10.1016/j.tws.2019.02.037
[27] Yang, H., Yang, X., Mao, Z.H., “Compressive performance of steel-reinforced concrete columns after exposure to high temperature”, Journal of Building Engineering, 59, 105120, 2022. DOI: 10.1016/j.jobe.2022.105120
[28] Wang, Y.Z., Gong J.L., Qu, S., Zhang B.J., Chen Y.T., “Mechanical properties of steel reinforced concrete T-shaped column after high temperature”, Structures, 46, 852-867, 2022. DOI: 10.1016/j.istruc.2022.10.117
[29] Liu, Z.Q., Wang, Y.Z., Li, G.Q., Jiang, J., Fu, C.Q., “Mechanical behavior of cross-shaped steel reinforced concrete columns after exposure to high temperatures”, Fire Safety Journal, 108, 102857, 2019. DOI: 10.1016/j.firesaf.2019.102857
[30] ABAQUS Standard Version 6.14 User’s Manual, Volumes I-III Pawtucket, Dassault Systemes Simulia Corp, Rhode Island, USA, 2014.
[31] Hong, S.D., Varma, A.H., “Analytical modeling of the standard fire behavior of loaded CFT columns”, Journal of Constructional Steel Research, 65(1), 54-69, 2009.
[32] EN l992-1-2, “Eurocode 2 Design of Concrete Structures”, European Committee for Standardization, 2004.
[33] EN 1993-1-2, “Eurocode 3 Design of Steel Structures, Part 1.2: General Rules-Structural Fire Design”, European Committee for Standardization, 2005.
[34] EN 1994-l-2, “Eurocode 4 Design of Composite Steel and Concrete Structures”, European Committee for Standardization, 2005.
[35] Lu, Z.D., Zhu, B.L., Tan, W., “Study on reinforcement and repair of reinforced concrete beams after fire”, Proceedings of the State Key Laboratory of Civil Engineering Disaster Prevention, 152-162, 1993. (in Chinese).
[36] Li, G.Q., Han, L.H., Lou, G.B., Jiang, S.C., “Fire design for steel and steel-concrete composite structures”, Beijing: China Architecture and Building Press, 2006. (in Chinese).
[37] Wu, B., “Mechanical performance of reinforced concrete structures after exposure to fire”, Beijing: Science Press, 2003. (in Chinese).
[38] Lie, T.T., “Fire resistance of circular steel columns filled with bar-reinforced concrete”, Journal of Structural Engineering, 120(5), 1489-1509, 1994. DOI: 10.1061/(ASCE)0733-9445(1994)120:5(1489)
[39] Zhou, K., Han, L.H., “Modelling the behaviour of concrete-encased concrete-filled steel tube (CFST) columns subjected to full-range fire”, Engineering Structures, 183, 265-280, 2019. DOI: 10.1016/j.engstruct.2018.12.100
[40] Ghojel, J., “Experimental and analytical technique for estimating interface thermal conductance in composite structural elements under simulated fire conditions”, Experimental Thermal and Fluid Science, 28(4), 347-354, 2004. DOI: 10.1016/S0894-1777(03)00113-4